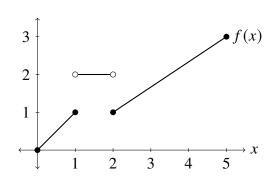
Math Camp 2025 - Problem Set 3

Read the following problems carefully and justify everything you do.

1. Limits. Find the following limits or show that they don't exist.

- 1. $\lim_{x \to +\infty} \frac{e}{x}$.
- $2. \lim_{x \to -\infty} \frac{e}{x}.$
- 3. $\lim_{x \to 3} \frac{x}{x^3 27}$.
- 4. $\lim_{x \to 3} \frac{x-3}{x^3-27}$.
- $5. \lim_{x \to \infty} \frac{x+1}{2x}.$
- 6. $\lim_{x\to\infty} \left(\frac{1}{2}\right)^x$.
- 7. $\lim_{x \to \infty} \frac{3x^3 + 2x^2 x + 3}{4x^4 + 3x^3 + 2x^2 + x + 4}.$
- 8. $\lim_{x \to 0} \frac{1}{x^2}$.
- 9. (a) $\lim_{x \to 1} f(x)$.
 - (b) $\lim_{x \to 2} f(x)$. (c) $\lim_{x \to 5} f(x)$.

where $f:[0,5]\to\mathbb{R}$ is given by the following graph.



Answer.

$$1. \lim_{x \to +\infty} \frac{e}{x} = 0.$$

$$2. \lim_{x \to -\infty} \frac{e}{x} = 0.$$

3.
$$\lim_{x \to 3} \frac{x}{x^3 - 27} = \infty$$
 since $x^3 - 27 \to 0$ and $x \to 3$.

4.
$$\frac{x-3}{x^3-27} = \frac{x-3}{(x-3)(x^2+3x+9)} = \frac{1}{x^2+3x+9} \to \frac{1}{27}$$
 when $x \to 3$.

5.
$$\frac{x+1}{2x} = \frac{x(1+\frac{1}{x})}{2x} = \frac{1+\frac{1}{x}}{2} \to \frac{1}{2} \text{ when } x \to \infty.$$

6.
$$\left(\frac{1}{2}\right)^x = \frac{1}{2^x} \to 0 \text{ since } 2^x \to \infty \text{ when } x \to +\infty.$$

7.
$$\frac{3x^3 + 2x^2 - x + 3}{4x^4 + 3x^3 + 2x^2 + x + 4} = \frac{x^3(3 + \frac{2}{x} - \frac{1}{x^2} + \frac{3}{x^3})}{x^4(4 + \frac{3}{x} + \frac{2}{x^2} + \frac{1}{x^3} + \frac{4}{x^4})} = \frac{3 + \frac{2}{x} - \frac{1}{x^2} + \frac{3}{x^3}}{x(4 + \frac{3}{x} + \frac{2}{x^2} + \frac{1}{x^3} + \frac{4}{x^4})} \to 0 \text{ as } x \to \infty$$

8.
$$\lim_{x \to 0} \frac{1}{x^2} = +\infty$$
.

9. (a)
$$\lim_{x \to 1} f(x)$$
 doesn't exist because $\lim_{x \to 1^{-}} f(x) = 1$ but $\lim_{x \to 1^{+}} f(x) = 2$.

(c)
$$\lim_{x\to 5} f(x) = 3$$
. (Notice that f is only defined on the left of 5.)

2. Continuity.

1. Consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ x & \text{if } x \ge 1. \end{cases}$$

Is it continuous?

2. The following functions are defined for all $x \in \mathbb{R}$ except for one point x_0 . Find x_0 and determine if they can be defined at x_0 so that they are continuous on \mathbb{R} .

2

(a)
$$f(x) = \frac{x-3}{x^3-27}$$
.

(b)
$$f(x) = \frac{1}{x}$$
.

(c)
$$f(x) = \begin{cases} x^2 & \text{if } x < 1 \\ x & \text{if } x > 1. \end{cases}$$

(d)
$$f(x) = \begin{cases} x^2 & \text{if } x < -1 \\ x & \text{if } x > -1. \end{cases}$$

Answer.

- 1. Yes, it is, because f(1) = 1 and $\lim_{x \to 1} f(x) = 1$, the latter because $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1$ and $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x = 1$.
- 2. (a) f is defined everywhere except when $x^3 27 = 0$, i.e., when x = 3. When $x \to 3$ we have

$$\frac{x-3}{x^3-27} = \frac{x-3}{(x-3)(x^2+3x+9)} = \frac{1}{x^2+3x+9} \to \frac{1}{27},$$

so we can define $f(3) = \frac{1}{27}$ and the result is continuous.

- (b) f is defined everywhere except at 0. We have $\lim_{x\to 0} f(x) = \infty$, so we can't make f continuous by choosing f(0).
- (c) Undefined at 1. Look at the lateral limits—clearly by setting f(1) = 1 we get a continuous function.
- (d) Undefined at 1. We have $\lim_{x \to -1^-} f(x) = 1$ but $\lim_{x \to -1^+} f(x) = -1$, so we can't make it continuous by choosing f(1).