
Math Camp 2025 – Problem Set 10

Read the following problems carefully and justify all your work. Avoid using calculators or
computers. (This was adapted almost verbatim from a problem set by Christopher Lucas.)

1. Suppose that 𝑋 and 𝑌 are independently distributed random variables with 𝑋 ∼ N(𝜇𝑋 , 𝜎
2
𝑋
) and

𝑌 ∼ N(𝜇𝑌 , 𝜎2
𝑌
). Note that 𝜇𝑋 represents the expectation of 𝑋 , 𝜎𝑋 represents the standard deviation,

and 𝜎2
𝑋

the variance.
Calculate the following quantities:

1. 𝔼(5𝑋 − 2𝑌 + 8)

2. Var(𝑋 + 3𝑌 )

3. 𝔼(4𝑋2 − 10𝑋𝑌 + 25𝑌2)

Answer.

1. 𝔼(5𝑋 − 2𝑌 + 8) = 5𝔼(𝑋) − 2𝔼(𝑌 ) − 8 = 5𝜇𝑋 − 2𝜇𝑌 − 8.

2. Using that 𝑋,𝑌 are independent, 𝑋, 3𝑌 are also independent [not entirely obvious, but
intuitive, and you can verify it using the definition]. Therefore Var(𝑋 + 3𝑌 ) = Var(𝑋) +
Var(3𝑌 ) = Var(𝑋) + 9 Var(𝑌 ) = 𝜎2

𝑋
+ 9𝜎2

𝑌
.

3. We have Var(𝑋) = 𝔼(𝑋2) − 𝔼(𝑋)2, so 𝜎2
𝑋
= 𝔼(𝑋2) − 𝜇2

𝑋
, and 𝔼(𝑋2) = 𝜇2

𝑋
+ 𝜎2

𝑋
. Similarly,

𝔼(𝑌2) = 𝜇2
𝑌
+ 𝜎2

𝑌
. We have 𝔼(𝑋𝑌 ) = 𝔼(𝑋)𝔼(𝑌 ) = 𝜇𝑋𝜇𝑌 because 𝑋,𝑌 are independent.

Therefore,

𝔼(4𝑋2 − 10𝑋𝑌 + 25𝑌2) = 4𝔼(𝑋2) − 10𝔼(𝑋𝑌 ) + 25𝔼(𝑌2)
= 4(𝜇2

𝑋 + 𝜎2
𝑋) − 10𝜇𝑋𝜇𝑌 + 25(𝜇2

𝑌 + 𝜎2
𝑌 ).

2. 𝑋 and 𝑌 are discrete random variables with the following joint distribution:

X
Y 1 2 3 4
1 .10 .07 .03 .01
2 .08 .13 .04 .02
3 .03 .04 .11 .09
4 .02 .03 .12 .08

Answer the following questions:
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(a) Calculate 𝔼[𝑋], 𝔼[𝑌 ], and 𝔼[𝑋𝑌 ].

(b) Calculate Var[𝑋] and Var[𝑌 ].

(c) Prove that the following two expressions of the covariance between 𝑋 and 𝑌 are equivalent:

cov(𝑋,𝑌 ) = 𝔼
[ (
𝑋 − 𝔼[𝑋]

) (
𝑌 − 𝔼[𝑌 ]

) ]
cov(𝑋,𝑌 ) = 𝔼[𝑋𝑌 ] − 𝔼[𝑋]𝔼[𝑌 ]

(d) Calculate cov(𝑋,𝑌 ).

(e) Calculate the correlation between 𝑋 and 𝑌 : 𝜌𝑋𝑌 with the following formula:

𝜌𝑋𝑌 =
cov(𝑋,𝑌 )√︁

Var[𝑋] Var[𝑌 ]

(f) Write out the probability mass function (PMF) of the random variable 𝑍 = 𝔼[𝑌 | 𝑋].

Comment. This means: find the possible values that 𝑍 = 𝔼[𝑌 | 𝑋] can take, and calculate
the probability that it takes each of those values.

Answer.

(a) Recall that the expectation of a discrete random variable 𝑋 is:

𝔼[𝑋] =
∑︁
𝑥

Pr(𝑋 = 𝑥) · 𝑥

Then we have:

𝔼[𝑋] = Pr(𝑋 = 1) · 1 + Pr(𝑋 = 2) · 2 + Pr(𝑋 = 3) · 3 + Pr(𝑋 = 4) · 4

= 1 · (0.10 + 0.08 + 0.03 + 0.02) + 2 · (0.07 + 0.13 + 0.04 + 0.03)
+ 3 · (0.03 + 0.04 + 0.11 + 0.12) + 4 · (0.01 + 0.02 + 0.09 + 0.08)

= 1 · 0.23 + 2 · 0.27 + 3 · 0.30 + 4 · 0.20

= 2.47

Similarly, we have:

𝔼[𝑌 ] = 2.56

𝔼[𝑋𝑌 ] = 6.89

2



(b) Recall the variance of a random variable 𝑋 is

Var[𝑋] = 𝔼[𝑋2] − 𝔼[𝑋]2.

And the expectation of the function of a discrete random variable 𝑋 is

𝔼[ 𝑓 (𝑋)] =
∑︁
𝑥

𝑓 (𝑥) · Pr(𝑋 = 𝑥).

Then we have

𝔼[𝑋2] = Pr(𝑋 = 1) · 12 + Pr(𝑋 = 2) · 22 + Pr(𝑋 = 3) · 32 + Pr(𝑋 = 4) · 42

= 1 · (0.10 + 0.08 + 0.03 + 0.02) + 4 · (0.07 + 0.13 + 0.04 + 0.03)
+ 6 · (0.03 + 0.04 + 0.11 + 0.12) + 16 · (0.01 + 0.02 + 0.09 + 0.08)

= 7.21.

Therefore, Var[𝑋] = 7.21 − 2.472 = 1.1091. Similarly, we have

Var[𝑌 ] = 1.1664.

(c) Using linearity of expectations, we have:

cov(𝑋,𝑌 ) = 𝔼
[ (
𝑋 − 𝔼[𝑋]

) (
𝑌 − 𝔼[𝑌 ]

) ]
= 𝔼

[
𝑋𝑌 − 𝔼[𝑋]𝑌 − 𝑋𝔼[𝑌 ] + 𝔼[𝑋]𝔼[𝑌 ]

]
= 𝔼[𝑋𝑌 ] − 𝔼

[
𝔼[𝑋]𝑌

]
− 𝔼

[
𝑋𝔼[𝑌 ]

]
+ 𝔼

[
𝔼[𝑋]𝔼[𝑌 ]

]
(𝔼[𝑋], 𝔼[𝑌 ] are constants)

= 𝔼[𝑋𝑌 ] − 𝔼[𝑋]𝔼[𝑌 ] − 𝔼[𝑋]𝔼[𝑌 ] + 𝔼[𝑋]𝔼[𝑌 ]
= 𝔼[𝑋𝑌 ] − 𝔼[𝑋]𝔼[𝑌 ]

(d) cov(𝑋,𝑌 ) = 𝔼[𝑋𝑌 ] − 𝔼[𝑋]𝔼[𝑌 ] = 6.89 − 2.47 · 2.56 = 0.5668.

(e) 𝜌𝑋𝑌 =
cov(𝑋,𝑌 )√︁

Var[𝑋] Var[𝑌 ]

=
0.5668

√
1.1091 · 1.1664

≈ 0.4983

(f) Recall that the PMF of a discrete random variable is simply 𝑓𝑋 (𝑥) ≡ Pr(𝑋 = 𝑥).
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Note that the random variable 𝑍 = 𝔼[𝑌 | 𝑋] takes different values based on the value of 𝑥.
For example:

𝔼[𝑌 | 𝑋 = 1] = 1
0.10 + 0.08 + 0.03 + 0.02

·
(
1 · 0.10 + 2 + 0.08 + 3 · 0.03 + 4 · 0.02

)
=

43
23

Similarly:

𝔼[𝑌 | 𝑋 = 2] = 57
27

𝔼[𝑌 | 𝑋 = 3] = 46
15

𝔼[𝑌 | 𝑋 = 4] = 16
5

Therefore, the PMF of 𝑍 is:

𝑓𝑍 (𝑧) = Pr(𝑍 = 𝑧) =



0.23 if 𝑧 = 43
23

0.27 if 𝑧 = 57
27

0.30 if 𝑧 = 46
15

0.20 if 𝑧 = 16
5

0 otherwise.

3. Imagine that every person in the United States has a fixed preference for redistribution, which
is defined as a continuous variable, where smaller values mean that the individual favors less
redistribution.

Let 𝑁 equals the size of the entire population of the US. Let𝑌𝑖 be the preference for redistribution
of person 𝑖 ∈ {1, . . . , 𝑁}, and 𝑌 be preference for redistribution of a person chosen uniformly at
random. Suppose that the average preference for redistribution of the entire population is 𝜇 and the
variance is 𝜎2.

As political scientists, we would like to make inferences about the aggregated preference for
redistribution of the entire population, but we can’t go out and measure every single person’s
view. So instead, we are going to sample 𝑛 people from the entire population at random (but not
necessarily with the same probability), and measure their preferences for each person in our sample
(imagine for now that every person who is sampled responds, and that we measure their views
correctly each time).

Let 𝑆𝑖 be an indicator variable for person 𝑖 being sampled, i.e., 𝑆𝑖 = 1 if 𝑖 is in the sample
and 𝑆𝑖 = 0 if not. Let 𝑆 be an indicator variable for a person chosen uniformly at random being
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sampled.
Let 𝜇̂ be the average preference for redistribution in our sample. The “hat” notation indicates

that 𝜇̂ is intended to estimate 𝜇 using only our sample.
Now answer the following questions:

(a) Consider 𝑌𝑖, 𝑆𝑖, 𝜇, and 𝜇̂. Which of these are random variables? Which, if any, are not?
Please make sure to explain your answer.

(b) Conceptually, what does 𝔼[𝑌 ] refer to?

(c) Conceptually, what do 𝔼[𝜇̂] and Var[𝜇̂] refer to?

(d) Calculate 𝔼[𝑆] and Var[𝑆].

(e) Write 𝜇̂ as an expression of 𝑛, 𝑁 , 𝑆𝑖, and 𝑌𝑖.

(f) Write 𝔼[𝜇̂] as an expression of 𝑛, 𝑁 , 𝑆 and 𝑌 . What is 𝔼[𝜇̂] if 𝑆 and 𝑌 are independent?

Hint. If 𝐼 is selected uniformly at random from {1, . . . , 𝑁} and 𝑋1, . . . , 𝑋𝑁 are numbers then
𝔼[𝑋𝐼] = 1

𝑁

∑𝑁
𝑖=1 𝑋𝑖. Notice that 𝑌 = 𝑌𝐼 and 𝑆 = 𝑆𝐼 .

(g) If 𝑆 and𝑌 were not independent, would we necessarily get the same result as in (f)? Practically,
what does this mean for surveys? Could you provide an example where 𝑆 and 𝑌 might not
be independent?

Answer.

(a) There are two sources of randomness: the sampling (i.e., who we are including in the sample),
and which individual we are selecting when we calculate 𝑆 and𝑌 . The sampling is the choice
of 𝑆1, . . . , 𝑆𝑁 . Which individual we are selecting is a variable 𝐼 that results from choosing
an individual uniformly at random. Given 𝐼, we define 𝑆 = 𝑆𝐼 and𝑌 = 𝑌𝐼 . Notice that we are
implicitly taking these two sources of randomness, (𝑆1, . . . , 𝑆𝑁 ) and 𝐼, to be independent.

So, 𝑌𝑖 for each 𝑖 ∈ {1, . . . , 𝑁} are just numbers. Not random. 𝑆𝑖 for each 𝑖 are random
variables, because we said that we are randomly sampling. The number 𝜇 is just the average
of 𝑌𝑖, so it’s not random. Finally, 𝜇̂ is random, because it is the average within the sample,
and who is in the sample is random.

(b) Recall from the previous answer that 𝑌 = 𝑌𝐼 . 𝔼(𝑌 ) is the expected value of that. The only
random part of 𝑌 is which individual we are choosing. Each one is selected with the same
probability. So, 𝔼(𝑌 ) is the average of 𝑌𝑖 for 𝑖 ∈ {1, . . . , 𝑁}. It’s just the population average
𝜇.
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(c) As we said, 𝜇̂ is random because it depends on who is sampled. So, 𝔼( 𝜇̂) is the expected
value of the sample average, and Var( 𝜇̂) is the variance.

(d) We have to use the so-called “law of iterated expectations.” First, if we have two discrete
random variables 𝑋 and 𝑌 and a value 𝑦 ∈ ℝ that 𝑌 can take, the conditional expectation of
𝑋 given 𝑌 = 𝑦, or 𝔼(𝑋 |𝑌 = 𝑦), is the expected value of 𝑋 taking conditional probabilities
with respect to the event 𝑌 = 𝑦:

𝔼(𝑋 |𝑌 = 𝑦) =
∑︁

𝑥∈supp(𝑋)
𝑥 · Pr(𝑋 = 𝑥 | 𝑌 = 𝑦).

Then, the conditional expectation of 𝑋 given 𝑌 is the random variable 𝑓 (𝑌 ) where 𝑓 (𝑦) =
𝔼(𝑋 |𝑌 = 𝑦). The law of iterated expectations states that 𝔼[𝔼(𝑋 |𝑌 )] = 𝔼(𝑋). (You can
verify that it is true.)

The idea is that when we are calculating the expectation of 𝑋 we can first calculate its
expected value assuming that 𝑌 is fixed (so we get 𝔼(𝑋 |𝑌 ), which depends on 𝑌 ), and then
we calculate the expected value of that, taking into account that 𝑌 is random.

This is useful to calculate the expected value of 𝑆 = 𝑆𝐼 because it has two sources of
randomness: the random sample, i.e., the values of 𝑆1, . . . , 𝑆𝑁 , and the particular individual
we are choosing, 𝐼 ∈ {1, . . . , 𝑁}. These two sources of randomness are independent, so
conditioning on one will not change the probabilities of the other one.

Noting this, we can use the law of iterated expectations:

𝔼(𝑆) = 𝔼(𝑆𝐼) = 𝔼[𝔼(𝑆𝐼 | 𝑆1, . . . , 𝑆𝑁 )] (law of iterated expectations)

= 𝔼

[
𝑁∑︁
𝑖=1

𝑆𝑖Pr(𝐼 = 𝑖 | 𝑆1, . . . , 𝑆𝑁 )
]

(using that, given 𝑆1, . . . , 𝑆𝑁 , 𝑆𝐼 is a function of 𝐼)

= 𝔼

[
𝑁∑︁
𝑖=1

𝑆𝑖Pr(𝐼 = 𝑖)
]

(using that 𝐼 is independent of 𝑆1, . . . , 𝑆𝑁 )

= 𝔼

[
𝑁∑︁
𝑖=1

𝑆𝑖
1
𝑁

]
(using that 𝐼 is uniform on {1, . . . , 𝑁})

= 𝔼

[
1
𝑁

𝑁∑︁
𝑖=1

𝑆𝑖

]
= 𝔼

[
1
𝑁
𝑛

]
(using that 𝑛 people are in the sample)

=
𝑛

𝑁
(𝔼(𝑐) = 𝑐 for 𝑐 constant).
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We can now calculate Var(𝑆) with the formula

Var(𝑆) = 𝔼(𝑆2) − 𝔼(𝑆)2

= 𝔼(𝑆) − 𝔼(𝑆)2 (using that 𝑆 is 0 or 1, and so 𝑆2 = 𝑆)

= 𝔼(𝑆) (1 − 𝔼(𝑆)) = 𝑛

𝑁

(
1 − 𝑛

𝑁

)
.

(e) Recall that 𝜇̂ is the average of 𝑌𝑖 within the sample, which has 𝑛 elements. We can take the
sum over the whole population but only including the individuals who are in the sample;
multiplying by 𝑆𝑖 does precisely that. So,

𝜇̂ =
1
𝑛

𝑁∑︁
𝑖=1

𝑆𝑖𝑌𝑖 .

(f) The idea is that when we take the expectation of 𝑆𝑌 = 𝑆𝐼𝑌𝐼 taking 𝑆1, . . . , 𝑆𝑁 as fixed (not
random), we get the average of 𝑆𝑖𝑌𝑖 over the population: 1

𝑁

∑𝑁
𝑖=1 𝑆𝑖𝑌𝑖. Formally,

𝔼(𝑆𝑌 | 𝑆1, . . . , 𝑆𝑁 ) =
1
𝑁

𝑁∑︁
𝑖=1

𝑆𝑖𝑌𝑖 .

So

𝜇̂ =
1
𝑛

𝑁∑︁
𝑖=1

𝑆𝑖𝑌𝑖 =
𝑁

𝑛

1
𝑁

𝑁∑︁
𝑖=1

𝑆𝑖𝑌𝑖 =
𝑁

𝑛
𝔼(𝑆𝑌 | 𝑆1, . . . , 𝑆𝑁 ).

Therefore,

𝔼( 𝜇̂) = 𝔼

[
𝑁

𝑛
𝔼(𝑆𝑌 | 𝑆1, . . . , 𝑆𝑁 )

]
=

𝑁

𝑛
𝔼[𝔼(𝑆𝑌 | 𝑆1, . . . , 𝑆𝑁 )] =

𝑁

𝑛
𝔼(𝑆𝑌 )

by the law of iterated expectations.

If 𝑆,𝑌 are independent then 𝔼(𝑆𝑌 ) = 𝔼(𝑆)𝔼(𝑌 ). Now, 𝔼(𝑆) = 𝑛
𝑁

and 𝔼(𝑌 ) is the population
average 𝜇. So, in this case, 𝔼(𝑆𝑌 ) = 𝑛

𝑁
𝜇, and

𝔼( 𝜇̂) = 𝑁

𝑛
𝔼(𝑆𝑌 ) = 𝑁

𝑛

𝑛

𝑁
𝜇 = 𝜇.

(g) In general, 𝔼(𝑆𝑌 ) = 𝔼(𝑆)𝔼(𝑌 ) + Cov(𝑆,𝑌 ), so

𝔼( 𝜇̂) = 𝑁

𝑛
𝔼(𝑆𝑌 ) = 𝑁

𝑛
(𝔼(𝑆)𝔼(𝑌 ) + Cov(𝑆,𝑌 )) = 𝜇 + 𝑁

𝑛
Cov(𝑆,𝑌 ).
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If 𝑆,𝑌 are independent then their covariance Cov(𝑆,𝑌 ) is 0, because

Cov(𝑆,𝑌 ) = 𝔼[(𝑆 − 𝔼(𝑆)) (𝑌 − 𝔼(𝑌 ))] = 𝔼[𝑆 − 𝔼(𝑆)]𝔼[𝑌 − 𝔼(𝑌 )] = 0

using independence. But if they are not, they could, for example, be positively associated
(meaning that 𝑆 is more likely to be 1 if 𝑌 is larger, or, in other words, people with greater
preference for redistribution are more likely to be sampled), which would create a positive
bias (“bias” is the difference between the expectation of the estimator and the estimand).
This is intuitive: if the probability of being sampled is not correlated with preferences for
redistribution then the sample average should be unbiased. But if, say, we oversample rich
people, who are likely to prefer less redistribution, then the sample average will be biased.

4. You are preparing to run a field experiment on the effectiveness of oversight in curbing corruption,
as in Olken, Benjamin A. 2007. “Monitoring Corruption: Evidence from a Field Experiment in
Indonesia,” Journal of Political Economy, vol. 115, no.2.

As part of a major infrastructure project, the Indonesian government has allocated funds for
roads in an “infinite” (we assume for the purpose of this question) number of villages. Your
experimental intervention is whether you inform the village that: “after funds had been awarded
but before construction began, the project would subsequently be audited by the central government
audit agency.”

After the road is constructed, you will conduct an extensive (and expensive) data-collection
effort to estimate the amount actually spent on each village’s roads, based on the quality of materials
found in excavated core samples, estimated wages based on interviews, and so on. The discrepancy
between allocated funds and estimated expenditures will be your outcome variable.

Let 𝑇𝑖 be an indicator variable for the treatment, so 𝑇𝑖 = 1 refers to village 𝑖 has been “treated.”
Let 𝑌𝑖 be the outcome you measured as described above, then the observed outcome is a function
of the treatment variable, i.e. 𝑌𝑖 = 𝑌𝑖 (𝑇𝑖). Each village 𝑖 has two potential outcomes:

• 𝑌𝑖 (0): the outcome that would be observed if village 𝑖 is assigned to the “control,” or
non-informed, group.

• 𝑌𝑖 (1): the outcome that would be observed if village 𝑖 is assigned to the “treatment,” or
informed, group.

Because the field experiment is such a large undertaking, you want to carefully design your
experiment to ensure success. At the same time, you can only afford to measure 100 villages.
Suppose that you randomly sample 𝑁𝑇 villages to assign to treatment and 𝑁𝐶 to control (so
𝑁𝑇 + 𝑁𝐶 = 100). Now answer the following questions:
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(a) Interpret the meaning of 𝑌𝑖 (1) − 𝑌𝑖 (0) for a single village 𝑖.

(b) Interpret the meaning of 𝔼[𝑌𝑖 (1) − 𝑌𝑖 (0)], where 𝑖 now is a random village.

(c) Interpret the meaning of 𝔼[𝑌𝑖 (0)] and 𝔼[𝑌𝑖 (1)], where 𝑖 denotes a random village. As an
expert on local bureaucracy and corruption, what kind of relationship do you expect between
these two quantities?

(d) Interpret the meaning of 1
100

∑
𝑖∈𝑆

(
𝑌𝑖 (1) −𝑌𝑖 (0)

)
, where 𝑆 denotes the set of villages in your

sample of 100 villages. Compare it to the quantity in (b).

(e) Interpret the meaning of Var[𝑌𝑖 (0)] and Var[𝑌𝑖 (1)], where again 𝑖 denotes a random village.
Again, as an expert, what kind of relationship do you expect between these two quantities?

(f) Assume that the treatment assignment is random, that is, Pr(𝑇𝑖 = 1) = 𝑁𝑇

100 for each 𝑖 ∈ 𝑆.
For simplicity, assume that villages 𝑖 = 1 through 𝑖 = 100 are in our sample, or equivalently,
𝑆 = {1, 2, . . . , 100}. Calculate the expectation of the following expression and interpret your
result:

𝜏 =
1
𝑁𝑇

100∑︁
𝑖=1

𝑇𝑖𝑌𝑖 −
1
𝑁𝐶

100∑︁
𝑖=1

(1 − 𝑇𝑖)𝑌𝑖 .

Answer.

(a) 𝑌𝑖 (1) − 𝑌𝑖 (0) is the treatment effect for the unit 𝑖. It’s the difference in outcomes between
receiving and not receiving the treatment.

(b) 𝔼[𝑌𝑖 (1) − 𝑌𝑖 (0)] is the average treatment effect over the population of villages.

(c) 𝔼[𝑌𝑖 (0)] is the average baseline outcome, without the intervention. 𝔼[𝑌𝑖 (0)] is the average
outcome if every village receives the treatment. The idea of the experiment is that we expect
that auditing will reduce corruption. 𝑌𝑖 (𝑡) is actual expenditure on the road, so what we
expect is that if we reduce corruption then village authorities will spend more money on the
roads (rather than stealing it).

(d) 1
100

∑
𝑖∈𝑆 (𝑌𝑖 (1) − 𝑌𝑖 (0)) is the average treatment effect within the sample. If the sample is

uniformly random (i.e., each village has the same chance of being sampled) then it will be
an unbiased estimator of the average treatment effect. (But notice we cannot calculate this
estimator, because we can’t observe both potential outcomes for any given village.)

(e) Var(𝑌𝑖 (0)) and Var(𝑌𝑖 (1)) are the variance of the outcomes without and with the treatment,
respectively. We may expect that the variance in expenditures should be smaller with the
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treatment, if the effect is to completely reduce corruption, and we believe that baseline levels
of corruption are heterogeneous.

(f) Recall that 𝑌𝑖 = 𝑌𝑖 (𝑇𝑖). We have

𝔼(𝜏) = 𝔼

[
1
𝑁𝑇

100∑︁
𝑖=1

𝑇𝑖𝑌𝑖 (𝑇𝑖) −
1
𝑁𝐶

100∑︁
𝑖=1

(1 − 𝑇𝑖)𝑌𝑖 (𝑇𝑖)
]

=
1
𝑁𝑇

100∑︁
𝑖=1

𝔼[𝑇𝑖𝑌𝑖 (𝑇𝑖)] −
1
𝑁𝐶

100∑︁
𝑖=1

𝔼[(1 − 𝑇𝑖)𝑌𝑖 (𝑇𝑖)]

(linearity of expectation)

=
1
𝑁𝑇

100∑︁
𝑖=1

[1 · 𝑌𝑖 (1) · Pr(𝑇𝑖 = 1) + 0 · 𝑌𝑖 (0) · Pr(𝑇𝑖 = 0)]

− 1
𝑁𝐶

100∑︁
𝑖=1

[0 · 𝑌𝑖 (1) · Pr(𝑇𝑖 = 1) + 1 · 𝑌𝑖 (0) · Pr(𝑇𝑖 = 0)]

=
1
𝑁𝑇

100∑︁
𝑖=1

𝑌𝑖 (1) · Pr(𝑇𝑖 = 1) − 1
𝑁𝐶

100∑︁
𝑖=1

𝑌𝑖 (0) · Pr(𝑇𝑖 = 0)

=
1
𝑁𝑇

100∑︁
𝑖=1

𝑌𝑖 (1) ·
𝑁𝑇

100
− 1
𝑁𝐶

100∑︁
𝑖=1

𝑌𝑖 (0) ·
𝑁𝐶

100

=
1

100

100∑︁
𝑖=1

𝑌𝑖 (1) −
1

100

100∑︁
𝑖=1

𝑌𝑖 (0)

=
1

100

100∑︁
𝑖=1

(𝑌𝑖 (1) − 𝑌𝑖 (0)),

which is the average treatment effect in the sample. If the sample itself is random, this will
be an unbiased estimator of the average treatment effect.
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