
Math Camp 2025 – Problem Set 1

Read the following problems carefully and justify everything you do. Avoid using calculators or
computers.

1. Operations. Simplify the following expressions.

1.
3 × 4
3 − 2

+ 4 + 3
7

2. (3 · 4)/(3 − 2) − (4 + 3)/7 · (2 + 10)/3

3.
3∑︁
𝑘=1

(
9 +

√︁
9𝑘

)
4.

5∏
𝑥=1

(2𝑥)

5.
𝑛∑︁
𝑘=1

𝑘 6.
2𝑔 + 13

3𝑔
+ 4𝑔 − 5

4𝑔

7.

𝑤3𝑧4

(𝑤 + 1) (𝑧 − 3)
(𝑤𝑧)3

(𝑤 − 2) (𝑧 − 3)

8.
∏100
𝑖=1 2𝑖∏100
𝑖=2 2𝑖

9.
𝑁∑︁
𝑖=1

(5𝑖 − 5𝑖−1).

Answer.

1.
3 × 4
3 − 2

+ 4 + 3
7

=
12
1

+ 7
7
= 12 + 1 = 13.

2. (3 · 4)/(3 − 2) − (4 + 3)/7 · (2 + 10)/3 = 12/1 − 7/7 · 12/3 = 12 − 4 = 8.

3.
3∑︁
𝑘=1

(
9 +

√︁
9𝑘

)
=

3∑︁
𝑘=1

(
9 + (32) 𝑘

2

)
=

3∑︁
𝑘=1

(
9 + 32× 𝑘

2

)
=

3∑︁
𝑘=1

(
9 + 3𝑘

)
= 9+3+9+32+9+33 =

66.

4.
5∏
𝑥=1

(2𝑥) =
5∏
𝑥=1

2 ×
5∏
𝑥=1

𝑥 = 25 × 5! = 32 × 120 = 3840.

5. A clever trick is to note that
𝑛∑︁
𝑘=1

𝑘 =

𝑛∑︁
𝑘=1

(𝑛− 𝑘 + 1), since it’s the same sum but in the reverse

order. Hence

𝑛∑︁
𝑘=1

𝑘 =
1
2

(
𝑛∑︁
𝑘=1

𝑘 +
𝑛∑︁
𝑘=1

𝑘

)
=

1
2

(
𝑛∑︁
𝑘=1

𝑘 +
𝑛∑︁
𝑘=1

(𝑛 − 𝑘 + 1)
)

=
1
2

𝑛∑︁
𝑘=1

(𝑘 + (𝑛 − 𝑘 + 1)) = 1
2

𝑛∑︁
𝑘=1

(𝑛 + 1) = 1
2
𝑛(𝑛 + 1).

You can also just guess that the answer is 1
2𝑛(𝑛+ 1) and prove it by induction. A third way is

to notice that
∑𝑛
𝑘=1 𝑘 counts the number of pairs (𝑎, 𝑏) ∈ ℕ2 with 1 ⩽ 𝑎 < 𝑏 ⩽ 𝑛 + 1, which
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is the same as the number of 2-element subsets of {1, . . . , 𝑛+ 1}, which is
(𝑛+1

2
)
= 1

2𝑛(𝑛+ 1).

6.
2𝑔 + 13

3𝑔
+ 4𝑔 − 5

4𝑔
=

2𝑔
3𝑔

+ 13
3𝑔

+ 4𝑔
4𝑔

− 5
4𝑔

=
2
3
+ 13

3
1
𝑔
+ 1 − 5

4
1
𝑔
=

5
3
+ 37

12𝑔
.

7.

𝑤3𝑧4

(𝑤 + 1) (𝑧 − 3)
(𝑤𝑧)3

(𝑤 − 2) (𝑧 − 3)

=
𝑤3𝑧4(𝑤 − 2) (𝑧 − 3)
(𝑤𝑧)3(𝑤 + 1) (𝑧 − 3)

=
𝑤3𝑧4(𝑤 − 2) (𝑧 − 3)
𝑤3𝑧3(𝑤 + 1) (𝑧 − 3)

=
𝑧(𝑤 − 2)
𝑤 + 1

.

8.
∏100
𝑖=1 2𝑖∏100
𝑖=2 2𝑖

=
21 × ∏100

𝑖=2 2𝑖∏100
𝑖=2 2𝑖

= 2.

9.
𝑁∑︁
𝑖=1

(5𝑖 − 5𝑖−1) = (51 − 50) + (52 − 51) + · · · + (5𝑁 − 5𝑁−1) = 5𝑁 − 50 = 5𝑁 − 1.

2. Exponents and Logarithms. Simplify the following expressions assuming 𝑥, 𝑎 > 0.

1. 𝑥2𝑥5 + 𝑥4𝑥3 2.
𝑥8

(𝑥4)2

3.
𝑥8

(𝑥8)4 4. 3√1000

5. 6√1000000 6. 3√1000000

7. log10(2𝑥35𝑥8) 8. 5 log(𝑥) − log(𝑥4)

9. log4(16) 10. log

(
𝑛∏
𝑖=1

(𝑎𝑒𝑥𝑖 )
)

Answer.

1. 𝑥2𝑥5 + 𝑥4𝑥3 = 𝑥2+5 + 𝑥4+3 = 𝑥7 + 𝑥7 = 2𝑥7.

2.
𝑥8

(𝑥4)2 =
𝑥8

𝑥4×2 =
𝑥8

𝑥4×2 =
𝑥8

𝑥8 = 1.

3.
𝑥8

(𝑥8)4 =
(𝑥8)1

(𝑥8)4 = (𝑥8)1−4 = (𝑥8)−3 = 𝑥8×(−3) = 𝑥−24.

4. 3√1000 =
3
√︁

103 = (103) 1
3 = 103× 1

3 = 101 = 10.

5. 6√1000000 =
6
√︁

106 = (106) 1
6 = 106× 1

6 = 101 = 10.

6. 3√1000000 =
3
√︁

106 = (106) 1
3 = 106× 1

3 = 102 = 100.

7. log10(2𝑥35𝑥8) = log10(10𝑥3+8) = log10(10𝑥11) = log10(10) + log10(𝑥11) = 1 + 11 log10(𝑥).
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8. 5 log(𝑥) − log(𝑥4) = log(𝑥5) + log(𝑥−4) = log(𝑥5𝑥−4) = log(𝑥1) = log(𝑥).

9. log4(16) = log4(42) = 2.

10. log

(
𝑛∏
𝑖=1

(𝑎𝑒𝑥𝑖 )
)
=

𝑛∑︁
𝑖=1

log(𝑎𝑒𝑥𝑖 ) =
𝑛∑︁
𝑖=1

(log(𝑎) + log(𝑒𝑥𝑖 )) =
𝑛∑︁
𝑖=1

(log(𝑎) + 𝑥𝑖)

= 𝑛 log(𝑎) +
𝑛∑︁
𝑖=1

𝑥𝑖 .

3. Class Questions. Go back to the questions in Lecture 1, and make sure you can answer all of
them. Write down your answers to 4.4, 5.6, 6 and 7.5.

Answer.

4.4. We have

𝑛∏
𝑖=1

𝑥𝑖

𝑦𝑖
=
𝑥1
𝑦1

× · · · × 𝑥𝑛

𝑦𝑛

= 𝑥1 ×
1
𝑦1

× · · · × 𝑥𝑛 ×
1
𝑦𝑛

= 𝑥1 × · · · × 𝑥𝑛 ×
1
𝑦1

× · · · × 1
𝑦𝑛

= 𝑥1 × · · · × 𝑥𝑛 ×
1

𝑦1 × · · · × 𝑦𝑛
=
𝑥1 × · · · × 𝑥𝑛
𝑦1 × · · · × 𝑦𝑛

=

∏𝑛
𝑖=1 𝑥𝑖∏𝑛
𝑖=1 𝑦𝑖

.

The first and last equalities are the definition of
∏𝑛
𝑖=1, and the middle ones is because × is

commutative.

5.6. By definition log(𝑎𝑥) is the number 𝑦 such that exp(𝑦) = 𝑎𝑥 . So we have to show that
𝑦 = 𝑥 log(𝑎), i.e., that exp(𝑥 log(𝑎)) = 𝑎𝑥 . Now, exp(𝑥 log(𝑎)) = exp(log(𝑎))𝑥 = 𝑎𝑥 , as
desired.

6. By definition, log𝑎 (𝑥) is the number 𝑦 such that 𝑎𝑦 = 𝑥, hence we have to show that 𝑦 = log(𝑥)
log(𝑎) .

Take log on both sides of 𝑎𝑦 = 𝑥 and we obtain log(𝑎𝑦) = log(𝑥), which is 𝑦 log(𝑎) = log(𝑥),
i.e., 𝑦 = log(𝑥)

log(𝑎) , as desired.

3



7.5. We have

log

{
𝑛∏
𝑖=1

[
1

√
2𝜋𝜎

exp
(
− 1

2𝜎2 (𝑥𝑖 − 𝜇)
2
)]}

=

𝑛∑︁
𝑖=1

log
{

1
√

2𝜋𝜎
exp

(
− 1

2𝜎2 (𝑥𝑖 − 𝜇)
2
)}

=

𝑛∑︁
𝑖=1

{
log

(
1

√
2𝜋𝜎

)
+ log

[
exp

(
− 1

2𝜎2 (𝑥𝑖 − 𝜇)
2
)]}

=

𝑛∑︁
𝑖=1

{
− log(

√
2𝜋𝜎) − 1

2𝜎2 (𝑥𝑖 − 𝜇)
2
}

= −𝑛 log(
√

2𝜋𝜎) − 1
2𝜎2

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2.

4. Application. The Cobb-Douglas production function relates labor (𝐿) and capital (𝐾) to
production (𝑌 ), such that 𝑌 = 𝐴𝐾 𝛽𝐿𝛼. (The usefulness of such functions extends beyond eco-
nomics; for example, Butler (2014) utilizes a Cobb-Douglas function when studying Congressional
representation.) Consider that regression equations are often specified in a form such as

𝑌 = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘 + 𝜖

where 𝑌 is the outcome, 𝛽0 is the intercept, 𝛽1, . . . , 𝛽𝑘 are coefficients, 𝑥1, . . . , 𝑥𝑘 are the inde-
pendent variables, and 𝜖 is an error term. Without worrying about the error term, manipulate the
Cobb-Douglas production function so that it is in such a form, where 𝛽 and 𝛼 are the coefficients.

Hint. A variable in a regression may actually be a “transformed” variable; for example, for various
reasons a researcher with one independent variable 𝑥1 may choose to estimate an effect 𝛽1 using
𝑌 = 𝛽0 + 𝛽1

√
𝑥1 rather than 𝑌 = 𝛽0 + 𝛽1𝑥1, though you should note the coefficient’s interpretation

is changed.

Answer. Take logs to 𝑌 = 𝐴𝐾 𝛽𝐿𝛼:

log(𝑌 ) = log(𝐴) + 𝛽 log(𝐾) + 𝛼 log(𝐿).

This is a linear equation with outcome log(𝑌 ), independent variables log(𝐾) and log(𝐿), intercept
log(𝐴), and coefficients 𝛽 and 𝛼.
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