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Derivatives

1. Partial derivatives

2. Gradient

3. Hessian

Multiple integrals

1. Fubini
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Functions of Multiple Variables
We’ll work with functions f : Rn → R, or f : D → R for some D ⊂ Rn.

For example, we want to minimize the mean squared error (MSE) of a statistical model
given a sample.

This is a function of the vector of parameters of the model β, say

f(β) = 1
n

∥y − Xβ∥2 = 1
n

n∑
i=1

(yi − β · Xi•)2.

We can see a function with two variables, e.g., f(x, y) = x2 + 2y, as a function that takes
as input the vector (x, y) ∈ R2, i.e., a function f : R2 → R.

We know that taking derivatives is useful for minimizing/maximizing functions of one
variable. It’s also going to be useful for minimizing/maximizing functions of many
variables.
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Partial Derivatives
We want to determine how the value of a function changes when only one variable
changes.

So, we take the derivative with respect to that variable, say xi, keeping all other variables

constant. We call that the partial derivative of f with respect to xi, denoted by
∂f

∂xi
.

Example. If f(x1, x2) = x2
1 + x1x2 then ∂f

∂x1
= 2x1 + x2.

Same thing. If f(x, y) = x2 + xy then ∂f

∂x
= 2x + y.

We can think of the partial derivative ∂y

∂x
as the “effect” on y of increasing x by one unit,

keeping everything else constant.
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Exercise

Question 1
Calculate

• ∂

∂y
(x2 + 2xy)

• ∂

∂x
e−x2+y

• ∂

∂z
ex−y+2z

• ∂

∂βi
(β · x), where x, β ∈ Rk.
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Gradient

The gradient ∇f is the vector of partial derivatives.

Example. If f(x1, x2) = x2
1 + x1x2 then ∇f(x1, x2) = (2x1 + x2, x1).

The gradient is the direction in which the function grows the most (locally).

The reason is that f(x) ≈ f(x0) + ∇f(x0) · (x − x0), and

∇f(x0) · (x − x0) ⩽ ∥∇f(x0)∥∥x − x0∥

by Cauchy-Schwarz, attained for x − x0 = ∇f(x0).

So, if you want to maximize f , you can take some x, and then go to x + α∇f(x) for some
α > 0, and keep doing this. If you want to minimize f , go to x − α∇f(x). This is
gradient descent, this is how deep learning models are trained.
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Exercise

Question 2
Calculate the gradients of the following functions:

• f(x, y) = x2 + 2xy,

• f(x, y) = e−x2+y,

• f(x, y, z) = ex−y+2z,

• f(β) = x · β.
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Optimization

If f : D → R with D ⊂ Rn, x0 is in the interior of D, and f is maximized at x0, then

∇f(x0) = 0.

Why? Every partial derivative should be zero, because otherwise we could increase f by
increasing/decreasing one variable (keeping the rest fixed).
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Second-order Derivatives
If f is a function of x, the partial derivative ∂f

∂xi
is also a function of x. We can take

another partial derivative, e.g., ∂

∂xj

∂f

∂xi
. We write

∂2f

∂xj∂xi
.

If the second-order partial derivatives are continuous then ∂2f

∂xj∂xi
= ∂2f

∂xi∂xj
, i.e., it

doesn’t matter in what order we take the partial derivatives. We write
∂2f

∂2xi
= ∂2f

∂xi∂xi
.

The Hessian ∇2f is the n × n matrix of second-order derivatives:

∇2f =


∂2f
∂2x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn...

... . . . ...
∂2f

∂xn∂x1
∂2f

∂xn∂x2
· · · ∂2f

∂2xn


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Example

If f(x, y) = x2 + 2xy, ∂f

∂x
= 2x + y, ∂f

∂y
= 2x, ∂2f

∂2x
= 2, ∂2f

∂x∂y
= 2, and ∂2f

∂2y
= 0, so

∇2f =
(

2 2
2 0

)
.

If g(x, y, z) = ex−y+2z, ∂g

∂x
= g, ∂g

∂y
= −g, ∂g

∂z
= 2g, ∂2g

∂2x
= g, ∂2g

∂x∂y
= −g, ∂2g

∂x∂z
= 2g,

∂2g

∂2y
= g, ∂2y

∂z∂= − 2g, and ∂2g

∂2z
= 4g, so

∇2g =

 g −g 2g
−g −g −2g
2g −2g 4g

 = g

 1 −1 2
−1 −1 −2
2 −2 4

 .
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Exercise

Question 3
Calculate ∇2f for f(x, y) = e−(x−y)2 .

Notice. An alternative notation for the gradient and Hessian is Df and D2f .

The Hessian is the generalization of the second derivative f ′′(x), and it’s useful because it
tells us if the function is concave or convex. We’ll see this later.
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Intervals in n Dimensions

The interval [a, b] × [c, d] is the set {(x, y) ∈ R2 : x ∈ [a, b] and y ∈ [c, d]}.

Example. [1, 2] × [0, 3]

x

y

1 2

3

0

In general, [a1, b1] × · · · × [an, bn] ⊂ Rn. Also, [a, b]2 = [a, b] × [a, b].

13



Integrals of Functions of Several Variables

If f : D → [0, +∞) with D ⊂ R2 then the integral∫∫
D

f(x, y) dxdy

is the volume of the region between the xy plane and the graph of the function f .

Fubini. (Special case.) If D = [a, b] × [c, d] then∫∫
D

f(x, y) dxdy =
∫ d

c

∫ b

a
f(x, y) dxdy =

∫ b

a

∫ d

c
f(x, y) dydx.

In general, if f : D → [0, +∞) with D ⊂ Rn the integral
∫

D
f(x1, . . . , xn) dx1 . . . dxn is

the “measure” of the region below the graph of f .
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Example
∫∫

[0,1]2
(x + 2y) dxdy =

∫ 1

0

∫ 1

0
(x + 2y) dxdy =

∫ 1

0

[
x2

2 + 2yx

]1

x=0
dy

=
∫ 1

0

(1
2 + 2y

)
dy =

[1
2y + y2

]1

0
= 3

2 .
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Exercise

Question 4
Calculate

∫∫
[0,1]×[0,2]

e−x−y dxdy.

Question 5
Calculate

∫∫
[0,+∞)2

e−x−y dxdy =
∫ +∞

0

∫ +∞

0
e−x−y dxdy.
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We can extend the definition to f negative in the same way we did for functions of one
variable.

We can use Fubini over domains that are not intervals. For example, consider this
triangle:

x

y

1

1

We can see it as the set of points (x, y) with 0 ⩽ x ⩽ 1 and 0 ⩽ y ⩽ x. So, if

D = {(x, y) ∈ R2 : 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ x},

we should have∫∫
D

f(x, y) dxdy =
∫ 1

0

∫ x

0
f(x, y) dydx =

∫ 1

0

∫ 1

y
f(x, y) dxdy.
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