Lecture 8: Derivatives and Integrals in \mathbb{R}^n

Juan Dodyk

WashU

1

PLAN

Derivatives

- 1. Partial derivatives
- 2. Gradient
- 3. Hessian

${\bf Multiple\ integrals}$

1. Fubini

FUNCTIONS OF MULTIPLE VARIABLES

We'll work with functions $f: \mathbb{R}^n \to \mathbb{R}$, or $f: D \to \mathbb{R}$ for some $D \subset \mathbb{R}^n$.

For example, we want to minimize the mean squared error (MSE) of a statistical model given a sample.

This is a function of the vector of parameters of the model β , say

$$f(\boldsymbol{\beta}) = \frac{1}{n} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\beta} \cdot \boldsymbol{X}_{i\bullet})^2.$$

We can see a function with two variables, e.g., $f(x,y) = x^2 + 2y$, as a function that takes as input the vector $(x,y) \in \mathbb{R}^2$, i.e., a function $f: \mathbb{R}^2 \to \mathbb{R}$.

We know that taking derivatives is useful for minimizing/maximizing functions of one variable. It's also going to be useful for minimizing/maximizing functions of many variables.

4

PARTIAL DERIVATIVES

We want to determine how the value of a function changes when only one variable changes.

So, we take the derivative with respect to that variable, say x_i , keeping all other variables constant. We call that the **partial derivative** of f with respect to x_i , denoted by $\frac{\partial f}{\partial x_i}$.

Example. If
$$f(x_1, x_2) = x_1^2 + x_1 x_2$$
 then $\frac{\partial f}{\partial x_1} = 2x_1 + x_2$.

Same thing. If
$$f(x,y) = x^2 + xy$$
 then $\frac{\partial f}{\partial x} = 2x + y$.

We can think of the partial derivative $\frac{\partial y}{\partial x}$ as the "effect" on y of increasing x by one unit, keeping everything else constant.

5

QUESTION 1

Calculate

- $\frac{\partial}{\partial y}(x^2 + 2xy)$ $\frac{\partial}{\partial x}e^{-x^2+y}$ $\frac{\partial}{\partial z}e^{x-y+2z}$

- $\frac{\partial}{\partial \beta_i}(oldsymbol{eta} \cdot oldsymbol{x})$, where $oldsymbol{x}, oldsymbol{eta} \in \mathbb{R}^k$.

GRADIENT

The gradient ∇f is the vector of partial derivatives.

Example. If
$$f(x_1, x_2) = x_1^2 + x_1 x_2$$
 then $\nabla f(x_1, x_2) = (2x_1 + x_2, x_1)$.

The gradient is the direction in which the function grows the most (locally).

The reason is that
$$f(x) \approx f(x_0) + \nabla f(x_0) \cdot (x - x_0)$$
, and

$$\nabla f(x_0) \cdot (x - x_0) \le ||\nabla f(x_0)|| ||x - x_0||$$

by Cauchy-Schwarz, attained for $x - x_0 = \nabla f(x_0)$.

So, if you want to maximize f, you can take some x, and then go to $x + \alpha \nabla f(x)$ for some $\alpha > 0$, and keep doing this. If you want to minimize f, go to $x - \alpha \nabla f(x)$. This is **gradient descent**, this is how deep learning models are trained.

QUESTION 2

Calculate the gradients of the following functions:

- $f(x,y) = x^2 + 2xy$,
- $f(x,y) = e^{-x^2+y}$, $f(x,y,z) = e^{x-y+2z}$,
- $f(\beta) = x \cdot \beta$.

OPTIMIZATION

If $f: D \to \mathbb{R}$ with $D \subset \mathbb{R}^n$, x_0 is in the interior of D, and f is maximized at x_0 , then

$$\nabla f(\boldsymbol{x}_0) = 0.$$

Why? Every partial derivative should be zero, because otherwise we could increase f by increasing/decreasing one variable (keeping the rest fixed).

SECOND-ORDER DERIVATIVES

If f is a function of x, the partial derivative $\frac{\partial f}{\partial x_i}$ is also a function of x. We can take another partial derivative, e.g., $\frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_i}$. We write $\frac{\partial^2 f}{\partial x_i \partial x_i}$.

If the second-order partial derivatives are continuous then $\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$, i.e., it doesn't matter in what order we take the partial derivatives. We write $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i}$.

The **Hessian** $\nabla^2 f$ is the $n \times n$ matrix of second-order derivatives:

$$\nabla^{2} f = \begin{pmatrix} \frac{\partial^{2} f}{\partial^{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial^{2} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial^{2} x_{n}} \end{pmatrix}$$

EXAMPLE

If
$$f(x,y) = x^2 + 2xy$$
, $\frac{\partial f}{\partial x} = 2x + y$, $\frac{\partial f}{\partial y} = 2x$, $\frac{\partial^2 f}{\partial^2 x} = 2$, $\frac{\partial^2 f}{\partial x \partial y} = 2$, and $\frac{\partial^2 f}{\partial^2 y} = 0$, so
$$\nabla^2 f = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix}.$$

If
$$g(x, y, z) = e^{x - y + 2z}$$
, $\frac{\partial g}{\partial x} = g$, $\frac{\partial g}{\partial y} = -g$, $\frac{\partial g}{\partial z} = 2g$, $\frac{\partial^2 g}{\partial^2 x} = g$, $\frac{\partial^2 g}{\partial x \partial y} = -g$, $\frac{\partial^2 g}{\partial x \partial z} = 2g$, $\frac{\partial^2 g}{\partial z \partial z} = g$, and $\frac{\partial^2 g}{\partial z^2} = g$, so

$$\nabla^2 g = \begin{pmatrix} g & -g & 2g \\ -g & -g & -2g \\ 2g & -2g & 4g \end{pmatrix} = g \begin{pmatrix} 1 & -1 & 2 \\ -1 & -1 & -2 \\ 2 & -2 & 4 \end{pmatrix}.$$

QUESTION 3

Calculate $\nabla^2 f$ for $f(x,y) = e^{-(x-y)^2}$.

Notice. An alternative notation for the gradient and Hessian is Df and D^2f .

The Hessian is the generalization of the second derivative f''(x), and it's useful because it tells us if the function is concave or convex. We'll see this later.

Intervals in n Dimensions

The interval $[a, b] \times [c, d]$ is the set $\{(x, y) \in \mathbb{R}^2 : x \in [a, b] \text{ and } y \in [c, d]\}.$

Example. $[1,2] \times [0,3]$

In general, $[a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$. Also, $[a, b]^2 = [a, b] \times [a, b]$.

INTEGRALS OF FUNCTIONS OF SEVERAL VARIABLES

If $f: D \to [0, +\infty)$ with $D \subset \mathbb{R}^2$ then the integral

$$\iint_D f(x,y) \, dx dy$$

is the volume of the region between the xy plane and the graph of the function f.

Fubini. (Special case.) If $D = [a, b] \times [c, d]$ then

$$\iint_D f(x,y) \, dx dy = \int_c^d \int_a^b f(x,y) \, dx dy = \int_a^b \int_c^d f(x,y) \, dy dx.$$

In general, if $f: D \to [0, +\infty)$ with $D \subset \mathbb{R}^n$ the integral $\int_D f(x_1, \dots, x_n) dx_1 \dots dx_n$ is the "measure" of the region below the graph of f.

EXAMPLE

$$\iint_{[0,1]^2} (x+2y) \, dx dy = \int_0^1 \int_0^1 (x+2y) \, dx dy = \int_0^1 \left[\frac{x^2}{2} + 2yx \right]_{x=0}^1 \, dy$$
$$= \int_0^1 \left(\frac{1}{2} + 2y \right) \, dy = \left[\frac{1}{2}y + y^2 \right]_0^1 = \frac{3}{2}.$$

QUESTION 4
Calculate
$$\iint_{[0,1]\times[0,2]} e^{-x-y} dxdy$$
.

QUESTION 5
Calculate
$$\iint_{[0,+\infty)^2} e^{-x-y} dxdy = \int_0^{+\infty} \int_0^{+\infty} e^{-x-y} dxdy$$
.

We can extend the definition to f negative in the same way we did for functions of one variable.

We can use Fubini over domains that are not intervals. For example, consider this triangle:

We can see it as the set of points (x, y) with $0 \le x \le 1$ and $0 \le y \le x$. So, if

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le x\},\$$

we should have

$$\iint_D f(x,y) \, dx dy = \int_0^1 \int_0^x f(x,y) \, dy dx = \int_0^1 \int_y^1 f(x,y) \, dx dy.$$

