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Plan

Square matrices

1. Identity, diagonal and symmetric matrices

2. Gaussian elimination

3. Inverse

4. Trace and determinant
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Square Matrices

Consider Rn×n, the set of n by n square matrices.

If A, B ∈ Rn×n then A + B, cA with c ∈ R and AB are also in Rn×n. Also A⊤ ∈ Rn×n.

We define the identity matrix In ∈ Rn×n as the matrix

In =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

We have InA = AIn = A for every A ∈ Rn×n.
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Diagonal and Triangular Matrices
Given a1, . . . , an ∈ R we define the diagonal matrix

diag(a1, . . . , an) =


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

 .

We say that A ∈ Rn×n is lower/upper triangular if it has zeros above/below the
diagonal: 

a11 0 · · · 0
a21 a22 · · · 0
...

... . . . ...
an1 an2 · · · ann


lower triangular


a11 a12 · · · a1n

0 a22 · · · a2n
...

... . . . ...
0 0 · · · ann


upper triangular
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Symmetric Matrices
We say that A is symmetric if A⊤ = A.

In other words, if the rows of A equal the columns of A.

Examples.

•

1 2 3
2 4 5
3 5 6

 is symmetric.

•

1 2 3
2 4 5
7 5 6

 is not.

Question 1
Convince yourself that if A ∈ Rm×n then A⊤A is symmetric.
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Gaussian Elimination

We want to solve a system of linear equations Ax = b.

Idea: transform A into an upper triangular matrix using transformations that are
equivalent to left-multiplying by matrices C. If we do the same to b, we preserve the
equation: Ax = b implies CAx = Cb.

We can:

• Take one row and multiply it by a nonzero scalar.

• Take one row and add it to another one, possibly multiplied by some scalar.

• Exchange two rows.

Once A is upper triangular, the system of equations is easy.
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Gaussian Elimination

We want to solve 1 1 0
1 −1 1
0 1 1


x1

x2
x3

 =

1
1
1

 .

Let’s clean the first column. Take the first row and subtract it from the second one. Let’s
keep track of the changes, ignoring x for now: 1 1 0 1

0 −2 1 0
0 1 1 1

 .
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Let’s clean the second column. We want to use the second row, so let’s first divide it by
−2:  1 1 0 1

0 1 −1
2 0

0 1 1 1

 .

Now subtract it from the third row. 1 1 0 1
0 1 −1

2 0
0 0 3

2 1

 .

Great! Now the equation is

1 1 0
0 1 −1

2
0 0 3

2


x1

x2
x3

 =

1
0
1

 , i.e.,



x1 + x2 = 1

x2 − 1
2x3 = 0
3
2x3 = 1

so x3 = 2
3 , x2 = 1

2x3 = 1
3 , and x1 = 1 − x2 = 1

3 .
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Example. We want to solve


x1 + x2 + x3 = 1
x1 + x2 − x3 = 0

x2 + x3 = 1
.

Gauss Algorithm: 1 1 1 1
1 1 −1 0
0 1 1 1

 ⇒

 1 1 1 1
0 0 −2 −1
0 1 1 1

 ⇒

 1 1 1 1
0 1 1 1
0 0 −2 −1


Notice. We had to exchange rows in the second step.

The system becomes 
x1 + x2 + x3 = 1

x2 + x3 = 1
−2x3 = −1

,

so x3 = 1
2 , x2 = 1

2 , and x1 = 1 − x2 − x3 = 0.
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Exercise

Question 2
Solve 

x1 + x2 + x3 = 1
x1 + x2 − x3 = 0

2x1 +x3 = 1.

using Gaussian elimination.
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Inverse
Given A ∈ Rn×n we say that A−1 ∈ Rn×n is the inverse of A if

A−1A = AA−1 = In.

Not every nonzero matrix has an inverse. For example, suppose that

A =
(

1 1
1 1

)

has an inverse A−1. We have A

(
1

−1

)
=
(

1 1
1 1

)(
1

−1

)
=
(

1 − 1
1 − 1

)
=
(

0
0

)
= 0.

Multiplying by A−1 the LHS we get: A−1A

(
1

−1

)
= In

(
1

−1

)
=
(

1
−1

)
. But multiplying

the RHS we get A−10 = 0 ̸=
(

1
−1

)
. This is impossible. Therefore, A−1 cannot exist.
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Properties of the Inverse
If A has an inverse we say that A is invertible.

Suppose that A, B are invertible. Then

• The inverse is unique.

• (A−1)−1 = A.

• (cA)−1 = c−1A−1 if c ∈ R, c ̸= 0.

• (AB)−1 = B−1A−1.

• (A−1)⊤ = (A⊤)−1.

• diag(a1, . . . , an)−1 = diag(a−1
1 , . . . , a−1

n ) if a1, . . . , an ∈ R∖ {0}.

Question 3
Why?
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Calculating the Inverse

Given A ∈ Rn×n we want A−1 such that AA−1 = In.

We can use Gauss Algorithm: if we do transformations to A that are left-multiplying by
C, and we end up with CA = In, then A−1 = C = CIn, so A−1 is the same as doing
those transformations to In.

Example. We want
(

1 1
1 −1

)−1

.

(
1 1 1 0
1 −1 0 1

)
⇒
(

1 1 1 0
0 −2 −1 1

)
⇒
(

1 1 1 0
0 1 1

2 −1
2

)
⇒
(

1 0 1
2

1
2

0 1 1
2 −1

2

)

So
(

1 1
1 −1

)−1

=
(

1
2

1
2

1
2 −1

2

)
.
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Example. Let’s try to find
(

1 1
1 1

)−1

.

(
1 1 1 0
1 1 0 1

)
⇒
(

1 1 1 0
0 0 −1 1

)
⇒ ?

If we get an upper triangular matrix with a zero in the diagonal, we won’t be able to
invert it.
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Exercise

Question 4

Calculate

1 1 1
1 1 −1
0 1 1


−1

if it exists.

Question 5

Calculate

1 1 1
1 1 −1
0 0 1


−1

if it exists.
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Exercise

Question 6

Verify that
(

a b
c d

)−1

= 1
ad − bc

(
d −b

−c a

)
if ad − bc ̸= 0.

What happens if ad − bc = 0?
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Trace
The trace of a square matrix is the sum of its diagonal elements. It defines the function
tr : Rn×n → R given be

tr(A) = a11 + · · · + ann.

Example. tr

 1 1 1
1 2 −1

−1 1 −1

 = 1 + 2 − 1 = 2.

Properties.

• tr(A + B) = tr(A) + tr(B),

• tr(cA) = c tr(A) if c ∈ R,

• tr(AB) = tr(BA) even if A, B are not square, as long as AB and BA are,

• tr(A⊤) = tr(A).
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Exercise

Question 7
Convince yourself that tr(A + B) = tr(A) + tr(B) and tr(AB) = tr(BA).
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Determinant

The determinant of a square matrix A, det(A), is defined recursively as follows:

If a ∈ R1×1 then det(a) = a.

Given

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 ,

we take the first column, and for each cell ai1 we delete the row and column of that cell,
obtaining a matrix M i1. The determinant is then

det(A) = a11 det(M11) − a21 det(M21) + · · · + (−1)n+1an1 det(Mn1).

We can write |A| instead of det(A).
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Example

det

 1 1 1
1 2 −1

−1 1 −1

 = 1 · det
(

2 −1
1 −1

)
− 1 · det

(
1 1
1 −1

)
+ (−1) · det

(
1 1
2 −1

)

Now,

• det
(

2 −1
1 −1

)
= 2 · (−1) − 1 · (−1) = −2 + 1 = −1,

• det
(

1 1
1 −1

)
= 1 · (−1) − 1 · 1 = −2, and

• det
(

1 1
2 −1

)
= 1 · (−1) − 2 · 1 = −1 − 2 = −3.

Therefore, det

 1 1 1
1 2 −1

−1 1 −1

 = 1 · (−1) − 1 · (−2) + (−1) · (−3) = −1 + 2 + 3 = 4.
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Diagonal and Triangular Matrices

Examples.

• det

2 0 0
0 1 0
0 0 −1

 = 2 · det
(

1 0
0 −1

)
= 2 · 1 · det(−1) = 2 · 1 · (−1) = −2.

• det

2 5 3
0 1 7
0 0 −1

 = 2 · det
(

1 7
0 −1

)
= 2 · 1 · det(−1) = 2 · 1 · (−1) = −2.

In general, if A is diagonal or triangular then det(A) is the product of the numbers in
the diagonal.
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Exercise

Question 8

Calculate det

1 1 1
1 1 −1
0 1 1

.
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Properties

If A, B ∈ Rn×n and c ∈ R then

• det(cA) = cn det(A),

• det(AB) = det(A) det(B),

• det(In) = 1,

• A is invertible iff det(A) ̸= 0; in that case, det(A−1) = det(A)−1,

• det(A⊤) = det(A).
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Adjoint Matrix
Given A ∈ Rn×n let Mij be the determinant of the matrix that results from removing the
ith row and the jth column of A.

The adjoint of A is the n by n matrix adj(A) whose ij entry is (−1)i+jMji.

Example.

adj

 1 1 1
1 2 −1

−1 1 −1

 =



det
(

2 −1
1 −1

)
− det

(
1 −1

−1 −1

)
det

(
1 2

−1 1

)

− det
(

1 1
1 −1

)
det

(
1 1

−1 −1

)
− det

(
1 1

−1 1

)

det
(

1 1
2 −1

)
− det

(
1 1
1 −1

)
det

(
1 2

−1 1

)



⊤

=

−1 2 3
2 0 −2

−3 2 1


⊤

Key Property. adj(A)A = det(A)In, so A−1 = det(A)−1adj(A).
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Exercise

Question 9

Use the formula A−1 = det(A)−1adj(A) to calculate

1 1 1
1 1 −1
0 1 1


−1

.
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