Lecture 7: Square Matrices

Juan Dodyk

WashU

PLAN

Square matrices

- 1. Identity, diagonal and symmetric matrices
- 2. Gaussian elimination
- 3. Inverse
- 4. Trace and determinant

SQUARE MATRICES

Consider $\mathbb{R}^{n \times n}$, the set of n by n square matrices.

If $A, B \in \mathbb{R}^{n \times n}$ then A + B, cA with $c \in \mathbb{R}$ and AB are also in $\mathbb{R}^{n \times n}$. Also $A^{\top} \in \mathbb{R}^{n \times n}$.

We define the **identity matrix** $I_n \in \mathbb{R}^{n \times n}$ as the matrix

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

We have $I_n A = A I_n = A$ for every $A \in \mathbb{R}^{n \times n}$.

4

DIAGONAL AND TRIANGULAR MATRICES

Given $a_1, \ldots, a_n \in \mathbb{R}$ we define the **diagonal matrix**

$$\mathbf{diag}(\boldsymbol{a_1},\ldots,\boldsymbol{a_n}) = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}.$$

We say that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is lower/upper triangular if it has zeros above/below the diagonal:

$$\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$
lower triangular upper triangular

5

Symmetric Matrices

We say that A is **symmetric** if $A^{\top} = A$.

In other words, if the rows of A equal the columns of A.

Examples.

•
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$
 is symmetric.

•
$$\begin{pmatrix} 1 & 2 & \mathbf{3} \\ 2 & 4 & 5 \\ \mathbf{7} & 5 & 6 \end{pmatrix}$$
 is not.

QUESTION 1

Convince yourself that if $\mathbf{A} \in \mathbb{R}^{m \times n}$ then $\mathbf{A}^{\top} \mathbf{A}$ is symmetric.

GAUSSIAN ELIMINATION

We want to solve a system of linear equations Ax = b.

Idea: transform A into an upper triangular matrix using transformations that are equivalent to left-multiplying by matrices C. If we do the same to b, we preserve the equation: Ax = b implies CAx = Cb.

We can:

- Take one row and multiply it by a nonzero scalar.
- Take one row and add it to another one, possibly multiplied by some scalar.
- Exchange two rows.

Once A is upper triangular, the system of equations is easy.

GAUSSIAN ELIMINATION

We want to solve

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Let's clean the first column. Take the first row and subtract it from the second one. Let's keep track of the changes, ignoring x for now:

$$\left(\begin{array}{ccc|c} 1 & 1 & 0 & 1 \\ 0 & -2 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right).$$

8

Let's clean the second column. We want to use the second row, so let's first divide it by -2:

$$\left(\begin{array}{ccc|c} 1 & 1 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 1 & 1 & 1 \end{array}\right).$$

Now subtract it from the third row.

$$\left(\begin{array}{ccc|c} 1 & 1 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{3}{2} & 1 \end{array}\right).$$

Great! Now the equation is

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \text{i.e.,} \quad \begin{cases} x_1 + x_2 = 1 \\ x_2 - \frac{1}{2}x_3 = 0 \\ \frac{3}{2}x_3 = 1 \end{cases}$$

so $x_3 = \frac{2}{3}$, $x_2 = \frac{1}{2}x_3 = \frac{1}{3}$, and $x_1 = 1 - x_2 = \frac{1}{3}$.

Example. We want to solve
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 - x_3 = 0 \\ x_2 + x_3 = 1 \end{cases}$$
.

Gauss Algorithm:

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 1 & 1 & -1 & | & 0 \\ 0 & 1 & 1 & | & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 0 & -2 & | & -1 \\ 0 & 1 & 1 & | & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & -2 & | & -1 \end{pmatrix}$$

Notice. We had to exchange rows in the second step.

The system becomes

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_2 + x_3 = 1 \\ -2x_3 = -1 \end{cases},$$

so
$$x_3 = \frac{1}{2}$$
, $x_2 = \frac{1}{2}$, and $x_1 = 1 - x_2 - x_3 = 0$.

QUESTION 2

Solve

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 - x_3 = 0 \\ 2x_1 + x_3 = 1. \end{cases}$$

using Gaussian elimination.

INVERSE

Given $A \in \mathbb{R}^{n \times n}$ we say that $A^{-1} \in \mathbb{R}^{n \times n}$ is the **inverse** of A if

$$\boldsymbol{A}^{-1}\boldsymbol{A} = \boldsymbol{A}\boldsymbol{A}^{-1} = \boldsymbol{I}_n.$$

Not every nonzero matrix has an inverse. For example, suppose that

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

has an inverse
$$\mathbf{A}^{-1}$$
. We have $\mathbf{A} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 - 1 \\ 1 - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{0}$. Multiplying by \mathbf{A}^{-1} the LHS we get: $\mathbf{A}^{-1}\mathbf{A} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \mathbf{I}_n \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. But multiplying the RHS we get $\mathbf{A}^{-1}\mathbf{0} = \mathbf{0} \neq \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. This is impossible. Therefore, \mathbf{A}^{-1} cannot exist.

Properties of the Inverse

If A has an inverse we say that A is invertible.

Suppose that A, B are invertible. Then

- The inverse is unique.
- $(A^{-1})^{-1} = A$.
- $(cA)^{-1} = c^{-1}A^{-1}$ if $c \in \mathbb{R}, c \neq 0$.
- $(AB)^{-1} = B^{-1}A^{-1}$.
- $(A^{-1})^{\top} = (A^{\top})^{-1}$.
- $\operatorname{diag}(a_1, \dots, a_n)^{-1} = \operatorname{diag}(a_1^{-1}, \dots, a_n^{-1}) \text{ if } a_1, \dots, a_n \in \mathbb{R} \setminus \{0\}.$

QUESTION 3

Why?

CALCULATING THE INVERSE

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ we want \mathbf{A}^{-1} such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n$.

We can use Gauss Algorithm: if we do transformations to A that are left-multiplying by C, and we end up with $CA = I_n$, then $A^{-1} = C = CI_n$, so A^{-1} is the same as doing those transformations to I_n .

Example. We want
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1}$$
.

$$\left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \end{array}\right)$$

So
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$
.

Example. Let's try to find $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^{-1}$.

$$\left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{array}\right) \Rightarrow ?$$

If we get an upper triangular matrix with a zero in the diagonal, we won't be able to invert it.

QUESTION 4

Calculate
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}^{-1}$$
 if it exists.

QUESTION 5

Calculate
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$
 if it exists.

QUESTION 6

Verify that
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 if $ad - bc \neq 0$.

What happens if ad - bc = 0?

TRACE

The **trace** of a square matrix is the sum of its diagonal elements. It defines the function $\operatorname{tr}: \mathbb{R}^{n \times n} \to \mathbb{R}$ given be

$$\operatorname{tr}(\boldsymbol{A}) = a_{11} + \dots + a_{nn}.$$

Example.
$$\operatorname{tr}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & -1 \end{pmatrix} = 1 + 2 - 1 = 2.$$

Properties.

- $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}),$
- $\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$ if $c \in \mathbb{R}$,
- tr(AB) = tr(BA) even if A, B are not square, as long as AB and BA are,
- $\operatorname{tr}(\boldsymbol{A}^{\top}) = \operatorname{tr}(\boldsymbol{A}).$

QUESTION 7

Convince yourself that tr(A + B) = tr(A) + tr(B) and tr(AB) = tr(BA).

DETERMINANT

The **determinant** of a square matrix A, det(A), is defined recursively as follows:

If $\boldsymbol{a} \in \mathbb{R}^{1 \times 1}$ then $\det(\boldsymbol{a}) = \boldsymbol{a}$.

Given

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

we take the first column, and for each cell a_{i1} we delete the row and column of that cell, obtaining a matrix M_{i1} . The determinant is then

$$\det(\mathbf{A}) = a_{11} \det(\mathbf{M}_{11}) - a_{21} \det(\mathbf{M}_{21}) + \dots + (-1)^{n+1} a_{n1} \det(\mathbf{M}_{n1}).$$

We can write |A| instead of det(A).

EXAMPLE

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & -1 \end{pmatrix} = 1 \cdot \det\begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} - 1 \cdot \det\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} + (-1) \cdot \det\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$

Now,

•
$$\det \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} = 2 \cdot (-1) - 1 \cdot (-1) = -2 + 1 = -1,$$

•
$$\det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = 1 \cdot (-1) - 1 \cdot 1 = -2$$
, and

•
$$\det\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = 1 \cdot (-1) - 2 \cdot 1 = -1 - 2 = -3.$$

Therefore,
$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & -1 \end{pmatrix} = 1 \cdot (-1) - 1 \cdot (-2) + (-1) \cdot (-3) = -1 + 2 + 3 = 4.$$

DIAGONAL AND TRIANGULAR MATRICES

Examples.

•
$$\det \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = 2 \cdot \det \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = 2 \cdot 1 \cdot \det(-1) = 2 \cdot 1 \cdot (-1) = -2.$$

•
$$\det \begin{pmatrix} 2 & 5 & 3 \\ 0 & 1 & 7 \\ 0 & 0 & -1 \end{pmatrix} = 2 \cdot \det \begin{pmatrix} 1 & 7 \\ 0 & -1 \end{pmatrix} = 2 \cdot 1 \cdot \det(-1) = 2 \cdot 1 \cdot (-1) = -2.$$

In general, if A is diagonal or triangular then det(A) is the product of the numbers in the diagonal.

QUESTION 8

Calculate
$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

PROPERTIES

If $A, B \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}$ then

- $\det(c\mathbf{A}) = c^n \det(\mathbf{A}),$
- $\bullet \ \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B}),$
- $\det(\boldsymbol{I}_n) = 1$,
- \boldsymbol{A} is invertible iff $\det(\boldsymbol{A}) \neq 0$; in that case, $\det(\boldsymbol{A}^{-1}) = \det(\boldsymbol{A})^{-1}$,
- $\bullet \ \det(\boldsymbol{A}^{\top}) = \det(\boldsymbol{A}).$

Adjoint Matrix

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ let M_{ij} be the determinant of the matrix that results from removing the *i*th row and the *j*th column of \mathbf{A} .

The adjoint of A is the n by n matrix adj(A) whose ij entry is $(-1)^{i+j}M_{ji}$.

Example.

$$\operatorname{adj} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} \det \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} & -\det \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} & \det \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \\ -\det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} & \det \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} & -\det \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \\ \det \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} & -\det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} & \det \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \end{pmatrix}^{\top} = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & -2 \\ -3 & 2 & 1 \end{pmatrix}^{\top}$$

Key Property. $adj(A)A = det(A)I_n$, so $A^{-1} = det(A)^{-1}adj(A)$.

QUESTION 9

Use the formula
$$\mathbf{A}^{-1} = \det(\mathbf{A})^{-1} \operatorname{adj}(\mathbf{A})$$
 to calculate $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}^{-1}$.

