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SQUARE MATRICES

Consider R™*™ the set of n by n square matrices.

If A, B € R"™" then A + B, cA with ¢ € R and AB are also in R"*". Also AT € R ",

We define the identity matrix I, € R"*™ as the matrix

01 - 0
In: .
0 0 1

We have I,A = AI,, = A for every A € R"*",



DIAGONAL AND TRIANGULAR MATRICES

Given aq,...,a, € R we define the diagonal matrix
ag 0 - 0
. 0 ay --- 0
diag(ai,...,an) = : .
0 O an

We say that A € R™*" is lower /upper triangular if it has zeros above/below the
diagonal:

ayz 0 - 0 ailz a2 - Gip
a1 az -+ 0 0 azx - a
anl Anp2 - Qpp 0 0 crt Opn

lower triangular upper triangular



SYMMETRIC MATRICES

We say that A is symmetric if AT = A.

In other words, if the rows of A equal the columns of A.

Ezamples.
1 2 3
e |2 4 5| is symmetric.
3 5 6
1 2 3
e |2 4 5] isnot.
7 5 6

QUESTION 1
Convince yourself that if A € R™*" then AT A is symmetric.




(GAUSSIAN ELIMINATION

We want to solve a system of linear equations Ax = b.

Idea: transform A into an upper triangular matrix using transformations that are
equivalent to left-multiplying by matrices C. If we do the same to b, we preserve the
equation: Ax = b implies CAx = Cb.
We can:

e Take one row and multiply it by a nonzero scalar.

e Take one row and add it to another one, possibly multiplied by some scalar.

e Exchange two rows.

Once A is upper triangular, the system of equations is easy.



(GAUSSIAN ELIMINATION

We want to solve

1 1 0\ [z 1
1 -1 1 o | =1
0 1 1 T3 1

Let’s clean the first column. Take the first row and subtract it from the second one. Let’s
keep track of the changes, ignoring « for now:

1 1
0 -2
0 1

=)
—_ O



Let’s clean the second column. We want to use the second row, so let’s first divide it by
—2:

1 1 0 |1
01 —3|0
01 1 |1
Now subtract it from the third row.
11 0 |1
01 -1
0 31
Great! Now the equation is
T1+ 20 =1
11 0\ (= 1 1
01 —% x| =101, ie., 372_5373:0
00 2/ \as 1 3
573 =



r1+ a2 +a3 =1
Example. We want to solve ¢ z1 +x9 —x3 =10

To+x3=1
Gauss Algorithm:
11 1|1 11 1 1
11 -1/0|=]00 -2|-1
01 1|1 01 1 1

Notice. We had to exchange rows in the second step.

The system becomes
1+ w2 +13=1
To +x3=1
—2x3 = —1

SO.TgZ%,l’g:%,andl’l:1—562—1’3:0.

Y
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EXERCISE

QUESTION 2

Solve
T1+ax9+x3=1
1+ 29 —23=0

221 +x3 = 1.

using Gaussian elimination.
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INVERSE

Given A € R™ ™ we say that A~ € R"*" is the inverse of A if

A'A=AA"1=1,.

Not every nonzero matrix has an inverse. For example, suppose that

1 1
, 1 1) (1 1\[1) (1-1) (o) _
has an inverse A~". We have A (_1> = (1 1) (_1> = (1 B 1) = (0 =0.

Multiplying by A~! the LHS we get: A™1A _11 =1, _11 = _11 . But multiplying

the RHS we get A710 =0 # (_11> This is impossible. Therefore, A~! cannot exist.
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PROPERTIES OF THE INVERSE

If A has an inverse we say that A is invertible.
Suppose that A, B are invertible. Then

e The inverse is unique.

o (AH)l=A

o (cA) l=cltAlifceR, c#0.

e (AB)"'=BlAa"1

o (AHT = (AT,

o diag(ay,...,a,)"" = diag(a; ', ..., a;") if a1,...,a, € R~ {0}.

QUESTION 3
Why?
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CALCULATING THE INVERSE

Given A € R™" we want A~! such that AA™' = T1,,.

We can use Gauss Algorithm: if we do transformations to A that are left-multiplying by
C, and we end up with CA = I,,, then A~! = C = CI,, so A~! is the same as doing
those transformations to I,,.

-1
Ezample. We want (1 ! ) .

1 -1
1 1
1 -1

10:>11
01 0 -2

= =
I o
N[ —
N———
/N
O =
— O
DI
| N[
N[
N
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11

1110:>1110:>?
1 170 1 0 0-11

If we get an upper triangular matrix with a zero in the diagonal, we won’t be able to
invert it.

-1
Ezample. Let’s try to find <1 1) .
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EXERCISE

QUESTION 4
11 1\"'
Calculate [1 1 -1 if it exists.
01 1
QUESTION 5
11 1\"'
Calculate [1 1 -1 if it exists.
00 1
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EXERCISE

QUESTION 6

-1
. a b 1 d —=b\ . B
Verlfy that (C d) = m (—C a ) if ad be ;é 0.

What happens if ad — bc = 07
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TRACE

The trace of a square matrix is the sum of its diagonal elements. It defines the function
tr : R™™ — R given be
tr(A) = a1l + te + Apn, -

1 1 1
Ezxample. tr| 1 2 —-1]=142-1=2.
-1 1 -1

Properties.
o tr(A+ B) =tr(A) + tr(B),
tr(cA) = ctr(A) if c € R,
o tr(AB) =tr(BA) even if A, B are not square, as long as AB and BA are,
o tr(AT) =tr(A).
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EXERCISE

QUESTION 7
Convince yourself that tr(A + B) = tr(A) + tr(B) and tr(AB) = tr(BA).
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DETERMINANT

The determinant of a square matrix A, det(A), is defined recursively as follows:

If a € R™! then det(a) = a.

Given
aiy a2 - Qip
az1 Q22 -+ QA2p
A= ,
anl Aanp2 - dpn

we take the first column, and for each cell a;; we delete the row and column of that cell,
obtaining a matrix M;;. The determinant is then

det(A) =ar det(Mll) — a9 det(Mgl) + -+ (—1)”+1an1 det(Mnl).

We can write |A| instead of det(A).
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Therefore, det

1 1

2 -1

1 -1
1 1
1 2

-1 1

zl-det<2 -1

1
-1
-1

EXAMPLE

1 -1

)—1-det<i

=1-(=1)=1-(=2)+(=1)-(-3)=-1+2+3=4.
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DIAGONAL AND TRIANGULAR MATRICES

Examples.
2 0 0 10

edet|0O 1 O |=2-det =2.1-det(-1)=2-1-(—1) = —2.
00 —1 0 1

= Ot

2 3
1 7
e det | O 7 —2-det<0 1

>:2-1~det(1):2~1-(1):2.

In general, if A is diagonal or triangular then det(A) is the product of the numbers in
the diagonal.
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EXERCISE

QUESTION 8

Calculate det (

11
11
01

1
-1
1

).
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PROPERTIES

If A, B € R™™™ and ¢ € R then

det(cA) = " det(A),

det(AB) = det(A) det(B),

det(I,) =1,

e A is invertible iff det(A) # 0; in that case, det(A™') = det(A)™1,
det(AT) = det(A).
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ADJOINT MATRIX

Given A € R"*" let M;; be the determinant of the matrix that results from removing the
ith row and the jth column of A.

The adjoint of A is the n by n matrix adj(A) whose 7j entry is (—1)""7/M;;.
Example.

2 -1 1 -1 1 2
det 1 1 —det 1 det 11

1 1 1
adj| 1 2 —-1]= —det(1 1) det(1 1> —det(1 1)
1 -1 -1 -1 -1 1
A 11 11 12
det (2 _1) —det (1 _1> det (_1 1)

Key Property. adj(A)A = det(A)I,, so A~ = det(A)adj(A).
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EXERCISE

QUESTION 9

Use the formula A™! = det(A)"'adj(A) to calculate

O =

—_ =
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