LECTURE 3: LIMITS

Juan Dodyk

WashU

1

PLAN

Limits

- 1. Definition
- 2. Calculating limits
- 3. Lateral limits
- 4. Continuity

Sequences

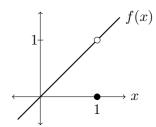
- 1. Convergence
- 2. Subsequences, monotonicity

GOOD MORNING!

LIMITS

Consider the function $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x & \text{if } x \neq 1, \\ 0 & \text{if } x = 1. \end{cases}$$



We have f(1) = 0. But if we look at f(x) for x close to 1, excluding x = 1, we see that f(x) gets close to 1, not 0.

We denote this by saying that the **limit** of f when x tends to 1 is 1, or

$$\lim_{x \to 1} f(x) = 1.$$

4

SEMI-FORMAL DEFINITION

If $f: X \to \mathbb{R}$ is a function, where $X \subset \mathbb{R}$ (i.e., X is a set of real numbers), and $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$, we say that

$$\lim_{x \to x_0} f(x) = L$$

if there are numbers $x \in X$ arbitrarily close to x_0 but not equal to x_0 and, as those x get arbitrarily close to x_0 , f(x) gets arbitrarily close to the limit L.

5

PROPERTIES OF LIMITS

If $\lim_{x \to x_0} f(x) \in \mathbb{R}$ and $\lim_{x \to x_0} g(x) \in \mathbb{R}$ we have

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x),$$

$$\lim_{x \to x_0} (f(x)g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x),$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \text{ if } \lim_{x \to x_0} g(x) \neq 0.$$

Example.

$$\lim_{x \to 1} \frac{x+1}{x} = \frac{\lim_{x \to 1} (x+1)}{\lim_{x \to 1} x} = \frac{\lim_{x \to 1} x + \lim_{x \to 1} 1}{\lim_{x \to 1} x} = \frac{1+1}{1} = 2.$$

Infinite Limits

A limit can be infinite, e.g., $\lim_{x \to +\infty} x = +\infty$.

We say that
$$f(x) \to L$$
 as $x \to x_0$ if $\lim_{x \to x_0} f(x) = L$.

We say that
$$f(x) \to \infty$$
 if $|f(x)| \to +\infty$.

Example.
$$\frac{1}{x} \to \infty$$
 as $x \to 0$.

In general, if
$$f(x) \to 0$$
 then $\frac{1}{f(x)} \to \infty$.

If
$$f(x) \to \infty$$
 then $\frac{1}{f(x)} \to 0$.

ARITHMETIC OF INFINITE LIMITS

- 1. If $f(x) \to +\infty$ and $g(x) \to L \in \mathbb{R} \cup \{+\infty\}$ then $f(x) + g(x) \to +\infty$. Example. If $x \to 0$ then $\frac{1}{x^2} \to +\infty$ and $e^x \to 1$, so $\frac{1}{x^2} + e^x \to +\infty$.
- 2. If $f(x) \to \infty$ and $g(x) \to L \in [-\infty, +\infty] \setminus \{0\}$ then $f(x)g(x) \to \infty$. Example. If $x \to 0$ then $\frac{1}{x} \to \infty$ and $e^x \to 1$, so $\frac{e^x}{x} \to \infty$.

We can determine the sign in the natural way.

Example. If $x \to 0$ then $\frac{1}{x^2} \to +\infty$ and $x-1 \to -1$, so $(x-1)\frac{1}{x^2} \to -\infty$.

"Indeterminate" Limits

 $(+\infty) - (+\infty)$ [or in general $\infty \pm \infty$], $0 \times \infty$, $\frac{\infty}{\infty}$ and $\frac{0}{0}$ can be anything, and may not even exist.

Examples.

- 1. If $x \to +\infty$, $(x+1) x = 1 \to 1$. But $(2x) x = x \to +\infty$.
- 2. If $x \to 0$, $x \cdot \frac{1}{x} = 1 \to 1$, but $x^2 \cdot \frac{1}{x} = x \to 0$.
- 3. If $x \to \infty$, $\frac{x}{x} = 1 \to 1$, but $\frac{x^2}{x} = x \to \infty$.
- 4. If $x \to 0$, $\frac{x}{x} = 1 \to 1$, but $\frac{x^2}{x} = x \to 0$ and $\frac{x}{x^2} = \frac{1}{x} \to \infty$.

TWO EXAMPLES

Take $x \to +\infty$. We have $\underbrace{x^2}_{\to +\infty} - \underbrace{x}_{\to +\infty}$ so it's not obvious what happens.

But

$$x^2 - x = \underbrace{x^2}_{\to +\infty} \underbrace{\left(1 - \frac{1}{x}\right)}_{\to 1} \to +\infty.$$

Consider

$$\underbrace{\frac{x-1}{2x+1}}_{\Rightarrow \pm \infty} \to ?$$

We have

$$\frac{x-1}{2x+1} = \frac{x\left(1-\frac{1}{x}\right)}{x(2+\frac{1}{x})} = \frac{1-\frac{1}{x}}{2+\frac{1}{x}} \to \frac{1}{2}.$$

QUESTION 1

Find the following limits.

1.
$$\lim_{x \to -\infty} x^2$$

3.
$$\lim_{x \to -\infty} \exp(x)$$

5.
$$\lim_{x \to +\infty} \frac{2x^3 - x + 1}{x^2 + x + 2}$$

$$\lim_{x \to -\infty} (x^3 + x^2)$$

4.
$$\lim_{x \to 0} \log(x)$$

6.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

Hint. For the last one, use that for any $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

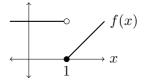
$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}).$$

LATERAL LIMITS

Consider this function:

$$f: \mathbb{R} \to \mathbb{R},$$

$$f(x) = \begin{cases} 1 & \text{if } x < 1, \\ x - 1 & \text{if } x \geqslant 1. \end{cases}$$



If $x \to 1$ with x < 1 then f(x) = 1, so $f(x) \to 1$. In that case we say that the **limit from** the left of f at 1 is 1, or $\lim_{x \to 1^-} f(x) = 1$.

If $x \to 1$ with x > 1 then f(x) = x - 1, so $f(x) \to 0$. In that case we say that the **limit** from the right of f at 1 is 1, or $\lim_{x \to 1^+} f(x) = 0$.

If $\lim_{x\to x_0} f(x)$ exists then the lateral limits have to be equal to it.

Since in this case the left and right limits don't coincide, the limit $\lim_{x\to 1} f(x)$ doesn't exist.

QUESTION 2

Find the following limits.

- $1. \quad \lim_{x \to 0^-} \frac{1}{x}$
- 3. $\lim_{x \to 0^-} \frac{1}{x^2}$
- 5. $\lim_{x \to 0^+} \log(x)$.

$$\lim_{x \to 0^+} \frac{1}{x}$$

4. $\lim_{x \to 0^+} \frac{1}{x^2}$

CONTINUITY

If $f: X \to \mathbb{R}$ with $X \subset \mathbb{R}$ and $x_0 \in X$ we say that f is **continuous at** x_0 if for $x \in X$ close to x_0 we have that f(x) is arbitrarily close to $f(x_0)$.

We say that $f: X \to \mathbb{R}$ is **continuous** if it's continuous at each $x_0 \in X$.

(We'll define this properly later.)

All the functions we've seen so far are continuous. If f, g are continuous at x_0 then f + g, fg, cf for $c \in \mathbb{R}$, and f/g if $g(x_0) \neq 0$ are also continuous at x_0 .

If f is continuous at x_0 and g is continuous at $f(x_0)$ then g(f(x)) is continuous at x_0 .

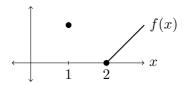
If there are points around x_0 in the domain of f then continuity at x_0 means that $\lim_{x\to x_0} f(x) = f(x_0)$.

VISUAL EXAMPLES

This is continuous:

$$f: \{1\} \cup [2, +\infty) \to \mathbb{R},$$

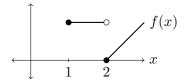
$$f(x) = \begin{cases} 1 & \text{if } x = 1, \\ x - 2 & \text{if } x \geqslant 2. \end{cases}$$



This is not continuous:

$$f: [1, +\infty) \to \mathbb{R},$$

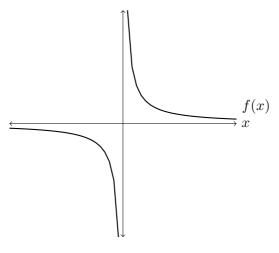
$$f(x) = \begin{cases} 1 & \text{if } x \in [1, 2), \\ x - 2 & \text{if } x \geqslant 2. \end{cases}$$



We have $\lim_{x\to 2^-} f(x) = 1$ but f(2) = 0. $\lim_{x\to 2} f(x)$ doesn't exist.

QUESTION 3

Is $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ given by f(x) = 1/x continuous?



SEQUENCES

A sequence of real numbers is a an infinite list $x_1, x_2, \ldots \in \mathbb{R}$. We can write it as $\{x_n\}_{n\in\mathbb{N}}$. We can think of it as a function $x:\mathbb{N}\to\mathbb{R}$.

We say that the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to $L\in\mathbb{R}$, or that its **limit** is L if, as n grows, x_n gets arbitrarily close to L. We write $x_n \to L$ or

$$\lim_{n\to\infty} x_n = L.$$

Example.
$$\lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{n}{n(2+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{2+\frac{1}{n}} = \frac{1}{2}.$$

QUESTION 4

Find
$$\lim_{n\to\infty} \frac{2^n}{n!}$$
. Here $n! = 1 \times \cdots \times n$, e.g., $3! = 1 \times 2 \times 3 = 6$.

A BETTER DEFINITION OF LIMITS

Recall what I wrote above:

If $f: X \to \mathbb{R}$ is a function, where $X \subset \mathbb{R}$, and $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$, we say that

$$\lim_{x \to x_0} f(x) = L$$

if there are numbers $x \in X$ arbitrarily close to x_0 but not equal to x_0 and, as those x get arbitrarily close to x_0 , f(x) gets arbitrarily close to the limit L.

A formal definition that makes that precise:

If $f: X \to \mathbb{R}$ is a function, where $X \subset \mathbb{R}$, and $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$, we say that

$$\lim_{x \to x_0} f(x) = L$$

- if (a) there is a sequence $x_n \to x_0$ with $x_n \in X \setminus \{x_0\}$, and
 - (b) for every sequence $x_n \to x_0$ with $x_n \in X \setminus \{x_0\}$ we have that $f(x_n) \to L$.

Subsequences

A subsequence of $\{x_n\}$ is any sequence of the form $\{x_{n_k}\}_{k\in\mathbb{N}}$, where $\{n_k\}$ is an increasing sequence of natural numbers.

THEOREM

If $\lim_{n\to\infty} x_n = L$ and $\{x_{n_k}\}$ is a subsequence then $\lim_{k\to\infty} x_{n_k} = L$.

For example, if $x_n = (-1)^n$ then $x_{2k} = (-1)^{2k} = 1$ is a subsequence, and $x_{2k+1} = (-1)^{2k+1} = -1$ is another one.

$$-1, 1, -1, 1, -1, 1, \dots$$

Since $x_{2k} \to 1$ but $x_{2k+1} \to -1$, x_n is not convergent.

MONOTONE SEQUENCES

A sequence $\{x_n\}$ is **monotone** if either $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$ or $x_n \geqslant x_{n+1}$ for all $n \in \mathbb{N}$.

For example, $x_n = (-1)^n$ is not monotone.

We say that $\{x_n\}$ is **monotone non-decreasing** if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$, and **monotone non-increasing** if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$.

We say that $\{x_n\}$ is **bounded** if there is a number $C \in \mathbb{R}$ such that $|x_n| \leq C$ for all $n \in \mathbb{N}$. E.g., $x_n = n$ is not bounded, but $x_n = 1/n$ is bounded.

THEOREM

If $\{x_n\}$ is monotone and bounded then it converges.

Example

Take
$$x_1 = 1$$
 and $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$.

We have

$$x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n} \geqslant 2\sqrt{\frac{x_n}{2} \cdot \frac{1}{x_n}} = 2\sqrt{\frac{1}{2}} = \sqrt{2},$$

so $x_n^2 \ge 2$ for any $n \ge 2$. (I have used that for all $x, y \ge 0, x + y \ge 2\sqrt{xy}$.)

If $n \ge 2$ we have

$$x_{n+1} - x_n = \frac{1}{x_n} - \frac{x_n}{2} = \frac{2 - x_n^2}{2x_n} \le 0.$$

Therefore $\{x_n\}$ is monotone non-increasing starting at n=2. Clearly $x_n \ge 0$, and $x_n \le x_2 = 1.5$, so $|x_n| \le 1.5$, and x_n is bounded. By the Theorem, x_n converges to some $L \in \mathbb{R}$.

We have
$$x_{n+1} \to L$$
 and $\frac{x_n}{2} + \frac{1}{x_n} \to \frac{L}{2} + \frac{1}{L}$, hence $L = \frac{L}{2} + \frac{1}{L}$, i.e., $L^2 = 2$. Since $x_n \ge 0$, $L \ge 0$, so $L = \sqrt{2}$.

