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Good Morning!
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Limits

Consider the function f : R∖ {1} → R given by

f(x) =
{

x if x ̸= 1,

0 if x = 1.
.

x

f(x)

1

1

We have f(1) = 0. But if we look at f(x) for x close to 1, excluding x = 1, we see that
f(x) gets close to 1, not 0.

We denote this by saying that the limit of f when x tends to 1 is 1, or

lim
x→1

f(x) = 1.
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Semi-formal Definition

If f : X → R is a function, where X ⊂ R (i.e., X is a set of real numbers), and
x0 ∈ R ∪ {−∞, +∞}, we say that

lim
x→x0

f(x) = L

if there are numbers x ∈ X arbitrarily close to x0 but not equal to x0 and, as those x get
arbitrarily close to x0, f(x) gets arbitrarily close to the limit L.
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Properties of Limits

If lim
x→x0

f(x) ∈ R and lim
x→x0

g(x) ∈ R we have

lim
x→x0

(f(x) ± g(x)) = lim
x→x0

f(x) ± lim
x→x0

g(x),

lim
x→x0

(f(x)g(x)) = lim
x→x0

f(x) · lim
x→x0

g(x),

lim
x→x0

f(x)
g(x) =

lim
x→x0

f(x)

lim
x→x0

g(x) if lim
x→x0

g(x) ̸= 0.

Example.

lim
x→1

x + 1
x

=
lim
x→1

(x + 1)

lim
x→1

x
=

lim
x→1

x + lim
x→1

1

lim
x→1

x
= 1 + 1

1 = 2.
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Infinite Limits

A limit can be infinite, e.g., lim
x→+∞

x = +∞.

We say that f(x) → L as x → x0 if lim
x→x0

f(x) = L.

We say that f(x) → ∞ if |f(x)| → +∞.

Example. 1
x

→ ∞ as x → 0.

In general, if f(x) → 0 then 1
f(x) → ∞.

If f(x) → ∞ then 1
f(x) → 0.
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Arithmetic of Infinite Limits

1. If f(x) → +∞ and g(x) → L ∈ R ∪ {+∞} then f(x) + g(x) → +∞.

Example. If x → 0 then 1
x2 → +∞ and ex → 1, so 1

x2 + ex → +∞.

2. If f(x) → ∞ and g(x) → L ∈ [−∞, +∞] ∖ {0} then f(x)g(x) → ∞.

Example. If x → 0 then 1
x → ∞ and ex → 1, so ex

x → ∞.

We can determine the sign in the natural way.

Example. If x → 0 then 1
x2 → +∞ and x − 1 → −1, so (x − 1) 1

x2 → −∞.
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“Indeterminate” Limits

(+∞) − (+∞) [or in general ∞ ± ∞], 0 × ∞, ∞
∞

and 0
0 can be anything, and may not

even exist.

Examples.

1. If x → +∞, (x + 1) − x = 1 → 1. But (2x) − x = x → +∞.

2. If x → 0, x · 1
x

= 1 → 1, but x2 · 1
x

= x → 0.

3. If x → ∞, x

x
= 1 → 1, but x2

x
= x → ∞.

4. If x → 0, x

x
= 1 → 1, but x2

x
= x → 0 and x

x2 = 1
x

→ ∞.
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Two Examples
Take x → +∞. We have x2︸︷︷︸

→+∞

− x︸︷︷︸
→+∞

so it’s not obvious what happens.

But
x2 − x = x2︸︷︷︸

→+∞

(
1 − 1

x

)
︸ ︷︷ ︸

→1

→ +∞.

Consider
→+∞︷ ︸︸ ︷
x − 1
2x + 1︸ ︷︷ ︸
→+∞

→ ?

We have
x − 1
2x + 1 =

x
(
1 − 1

x

)
x(2 + 1

x)
=

1 − 1
x

2 + 1
x

→ 1
2 .
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Question 1
Find the following limits.

1. lim
x→−∞

x2 2. lim
x→−∞

(x3 + x2)

3. lim
x→−∞

exp(x) 4. lim
x→0

log(x)

5. lim
x→+∞

2x3 − x + 1
x2 + x + 2 6. lim

x→2

x3 − 8
x − 2

Hint. For the last one, use that for any x, y ∈ R and n ∈ N we have

xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1).
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Lateral Limits
Consider this function:

f : R → R,

f(x) =
{

1 if x < 1,

x − 1 if x ⩾ 1. x

f(x)

1

If x → 1 with x < 1 then f(x) = 1, so f(x) → 1. In that case we say that the limit from
the left of f at 1 is 1, or lim

x→1−
f(x) = 1.

If x → 1 with x > 1 then f(x) = x − 1, so f(x) → 0. In that case we say that the limit
from the right of f at 1 is 1, or lim

x→1+
f(x) = 0.

If lim
x→x0

f(x) exists then the lateral limits have to be equal to it.

Since in this case the left and right limits don’t coincide, the limit lim
x→1

f(x) doesn’t exist.
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Question 2
Find the following limits.

1. lim
x→0−

1
x

2. lim
x→0+

1
x

3. lim
x→0−

1
x2 4. lim

x→0+

1
x2

5. lim
x→0+

log(x).
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Continuity

If f : X → R with X ⊂ R and x0 ∈ X we say that f is continuous at x0 if for x ∈ X
close to x0 we have that f(x) is arbitrarily close to f(x0).

We say that f : X → R is continuous if it’s continuous at each x0 ∈ X.

(We’ll define this properly later.)

All the functions we’ve seen so far are continuous. If f, g are continuous at x0 then f + g,
fg, cf for c ∈ R, and f/g if g(x0) ̸= 0 are also continuous at x0.

If f is continuous at x0 and g is continuous at f(x0) then g(f(x)) is continuous at x0.

If there are points around x0 in the domain of f then continuity at x0 means that
lim

x→x0
f(x) = f(x0).
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Visual Examples
This is continuous:

f : {1} ∪ [2, +∞) → R,

f(x) =
{

1 if x = 1,

x − 2 if x ⩾ 2. x

f(x)

1 2

This is not continuous:

f : [1, +∞) → R,

f(x) =
{

1 if x ∈ [1, 2),
x − 2 if x ⩾ 2. x

f(x)

1 2

We have lim
x→2−

f(x) = 1 but f(2) = 0. lim
x→2

f(x) doesn’t exist.
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Question 3
Is f : R∖ {0} → R given by f(x) = 1/x continuous?

x
f(x)
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Sequences
A sequence of real numbers is a an infinite list x1, x2, . . . ∈ R. We can write it as
{xn}n∈N. We can think of it as a function x : N → R.

We say that the sequence {xn}n∈N converges to L ∈ R, or that its limit is L if, as n
grows, xn gets arbitrarily close to L. We write xn → L or

lim
n→∞

xn = L.

Example. lim
n→∞

n

2n + 1 = lim
n→∞

n

n(2 + 1
n)

= lim
n→∞

1
2 + 1

n

= 1
2.

Question 4
Find lim

n→∞
2n

n! . Here n! = 1 × · · · × n, e.g., 3! = 1 × 2 × 3 = 6.
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A Better Definition of Limits
Recall what I wrote above:

If f : X → R is a function, where X ⊂ R, and x0 ∈ R ∪ {−∞, +∞}, we say that

lim
x→x0

f(x) = L

if there are numbers x ∈ X arbitrarily close to x0 but not equal to x0 and, as
those x get arbitrarily close to x0, f(x) gets arbitrarily close to the limit L.

A formal definition that makes that precise:

If f : X → R is a function, where X ⊂ R, and x0 ∈ R ∪ {−∞, +∞}, we say that

lim
x→x0

f(x) = L

if (a) there is a sequence xn → x0 with xn ∈ X ∖ {x0}, and
(b) for every sequence xn → x0 with xn ∈ X ∖ {x0} we have that f(xn) → L.
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Subsequences

A subsequence of {xn} is any sequence of the form {xnk
}k∈N, where {nk} is an

increasing sequence of natural numbers.

Theorem
If lim

n→∞
xn = L and {xnk

} is a subsequence then lim
k→∞

xnk
= L.

For example, if xn = (−1)n then
x2k = (−1)2k = 1 is a subsequence, and
x2k+1 = (−1)2k+1 = −1 is another one.

−1, 1, −1, 1, −1, 1, . . .

Since x2k → 1 but x2k+1 → −1, xn is not convergent.
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Monotone Sequences

A sequence {xn} is monotone if either xn ⩽ xn+1 for all n ∈ N or xn ⩾ xn+1 for all
n ∈ N.

For example, xn = (−1)n is not monotone.

We say that {xn} is monotone non-decreasing if xn ⩽ xn+1 for all n ∈ N, and
monotone non-increasing if xn ⩾ xn+1 for all n ∈ N.

We say that {xn} is bounded if there is a number C ∈ R such that |xn| ⩽ C for all
n ∈ N. E.g., xn = n is not bounded, but xn = 1/n is bounded.

Theorem
If {xn} is monotone and bounded then it converges.
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Example
Take x1 = 1 and xn+1 = xn

2 + 1
xn

.

We have

xn+1 = xn

2 + 1
xn

⩾ 2
√

xn

2
1

xn
= 2

√
1
2 =

√
2,

so x2
n ⩾ 2 for any n ⩾ 2. (I have used that for all x, y ⩾ 0, x + y ⩾ 2√

xy.)

If n ⩾ 2 we have

xn+1 − xn = 1
xn

− xn

2 = 2 − x2
n

2xn
⩽ 0.

Therefore {xn} is monotone non-increasing starting at n = 2. Clearly xn ⩾ 0, and
xn ⩽ x2 = 1.5, so |xn| ⩽ 1.5, and xn is bounded. By the Theorem, xn converges to some
L ∈ R.

We have xn+1 → L and xn

2 + 1
xn

→ L

2 + 1
L

, hence L = L

2 + 1
L

, i.e., L2 = 2. Since xn ⩾ 0,

L ⩾ 0, so L =
√

2.
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