LECTURE 2: SETS AND FUNCTIONS

Juan Dodyk

WashU

PLAN

Sets

- 1. Extension and Comprehension
- 2. Operations
- 3. Intervals

Functions

- 1. Domain and Range
- 2. Inverse functions

GOOD MORNING!

SETS

A **set** is a collection of things.

If A is a set and it contains x, we say that $x \in A$. We say that x is an element of A.

Two sets A and B are the same (i.e., A = B) if and only if they have the same elements. In other words, if for every $x, x \in A$ if and only if $x \in B$.

We can define a set by extension, i.e., by listing its elements, e.g.,

$$A = \{2, \pi, \text{Juan}\}$$

is the set that contains the numbers 2 and π , and it also contains me.

The **empty set** contains nothing: $\emptyset = \{\}.$

Sets can contain other sets, e.g., $\{\emptyset, \{\emptyset\}\}\$ is a set. In fact, in modern math (with the Zermelo-Fraenkel axioms) everything is a set, so there is nothing else to contain.

SET COMPREHENSION

We can define a set by comprehension: is A is a set, we can define the set

$$\{x \in A : P(x)\}$$
 or, equivalently, $\{x : x \in A, P(x)\}$

where P(x) is a property. For example,

$${n \in \mathbb{N} : n < 10 \text{ and } n \text{ is odd}} = {1, 3, 5, 7, 9}.$$

If
$$A = \{2, \pi, \text{Juan}\}$$
, $\{x \in A : x \text{ is a person}\} = \{\text{Juan}\}.$

Sometimes people write $\{x \in A \mid P(x)\}.$

OPERATIONS ON SETS

If A and B are sets we can define their union, $A \cup B$, which is the set that contains the elements of A and those of B.

We can define their **intersection** as

$$\mathbf{A} \cap \mathbf{B} = \{x \in A : x \in B\},\$$

and their difference as

$$\mathbf{A} \setminus \mathbf{B} = \{x \in A : x \notin B\}.$$

We have

- $-x \in A \cup B$ if and only if $x \in A$ or $x \in B$.
- $-x \in A \cap B$ if and only if $x \in A$ and $x \in B$.
- $-x \in A \setminus B$ if and only if $x \in A$ and $x \notin B$.

NUMBER INTERVALS

If $a, b \in \mathbb{R}$ we define the closed interval

$$[a, b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\},\$$

the open interval

$$(a, b) = \{x \in \mathbb{R} : a < x < b\},\$$

and the interval

$$[a, b) = \{x \in \mathbb{R} : a \leqslant x < b\}.$$

Also
$$[a, +\infty) = \{x \in \mathbb{R} : a \leq x\}, (-\infty, a) = \{x \in \mathbb{R} : x < a\}$$
 and so on.

QUESTION 1

Write the following sets as intervals:

- 1. $[0,2] \cap [1,3]$, 2. $[0,2] \cup [1,3)$,

3. $[0,2] \setminus [1,3]$.

FUNCTIONS

If A and B are two sets a function $f : A \to B$ is a mapping of each element of A to an element of B. If $x \in A$, f maps it to $f(x) \in B$.

We call A the domain of f, and B its codomain. The range of f is

$$f(A) = \{ f(x) : x \in A \}.$$

Example:

Here we have $f(a_1) = b_1$, and $f(a_2) = f(a_3) = b_2$. The range is $f(A) = \{b_1, b_2\}$.

QUESTION 2

Suppose that $f: D \to \mathbb{R}$ is a function that satisfies the following equation for all $x \in D$. Find the maximal domain D.

$$1. \quad f(x) = \frac{1}{x}$$

1.
$$f(x) = \frac{1}{x}$$
,
2. $f(x) = \frac{2x-1}{\log(x-1)}$,

3.
$$f(x) = \sqrt{\exp(x) - 1}$$
,

4.
$$f(x) = \log(x) + \log(1 - x)$$
.

SOME FUNCTIONS

We saw the functions $\exp : \mathbb{R} \to (0, +\infty)$ and $\log : (0, +\infty) \to \mathbb{R}$.

Linear functions are $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b for some $a, b \in \mathbb{R}$.

Quadratic functions are $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = ax^2 + bx + c$ for some $a, b, c \in \mathbb{R}$ with $a \neq 0$.

Polynomial functions are $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ for some $n \in \mathbb{N}$ and $a_0, \dots, a_n \in \mathbb{R}$.

Example: $f(x) = 2x^5 - 3x^2 + 1$.

COMPLETING THE SQUARE

If
$$x, y \in \mathbb{R}$$
 we have $(x \pm y)^2 = x^2 \pm 2xy + y^2$.

In particular,
$$\left(x \pm \frac{1}{2}b\right)^2 = x^2 \pm bx + \left(\frac{b}{2}\right)^2$$
.

Therefore,
$$x^2 \pm bx = (x \pm \frac{1}{2}b)^2 - \frac{1}{4}b^2$$
.

Consider
$$x^2 - x + 1$$
.

$$x^2 - x = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}.$$

So
$$x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$$
.

QUESTION 3

What is the range of $f(x) = x^2 - x + 1$?

QUADRATIC FUNCTIONS: ROOTS

A **root** of a function f is a point x such that f(x) = 0.

How to find the roots of a quadratic? We can complete the square. For example, to solve

$$x^2 - 4x + 1 = 0$$

we complete the square first: $x^2 - 4x + 1 = (x - 2)^2 - 4 + 1 = (x - 2)^2 - 3$.

We want $(x-2)^2 - 3 = 0$.

This is $(x-2)^2 = 3$.

Two options: $x - 2 = \sqrt{3}$ or $x - 2 = -\sqrt{3}$.

So, two roots: $x = 2 + \sqrt{3}$ and $x = 2 - \sqrt{3}$.

QUESTION 4

What about $f(x) = x^2 - x + 1$?

QUADRATIC FUNCTIONS: ROOTS

There is a formula: if $f(x) = ax^2 + bx + c$ with $a \neq 0$ the roots are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

This only works if $b^2 - 4ac \ge 0$.

If $b^2 - 4ac < 0$ then the quadratic doesn't have roots.

QUESTION 5

Use the formula for $x^2 - x + 1 = 0$ and $x^2 - 4x + 1 = 0$.

Absolute Value

We define the absolute value function $|\cdot|: \mathbb{R} \to [0, +\infty)$ by

$$|\mathbf{x}| = \begin{cases} x & \text{if } x \geqslant 0, \\ -x & \text{if } x < 0. \end{cases}$$

Example: |2| = 2, |0| = 0, but |-1| = 1.

Inverse Functions

Let $f: X \to Y$ be a function. Suppose that

for each $y \in Y$ there is exactly one $x \in X$ such that f(x) = y.

In that case we say that f is **invertible** or a bijection.

We obtain a function $f^{-1}: Y \to X$ such that $f(f^{-1}(y)) = y$ for all $y \in Y$. We call it the **inverse** function of f.

INVERSE FUNCTIONS

" f^{-1} is the inverse of f" is equivalent to

for every
$$x \in X$$
, $y \in Y$, $f(x) = y$ if and only if $f^{-1}(y) = x$.

Notice the symmetry: if f^{-1} is the inverse of f then f is the inverse of f^{-1} .

Examples.

- 1. If f(x) = x + 1 then $f^{-1}(x) = x 1$, since x + 1 = y if and only if x = y 1.
- 2. The inverse of $f(x) = x^{\frac{1}{2}}$ is $g(x) = x^2$ defined only for $x \ge 0$.
- 3. log is the inverse of exp.
- 4. $\log_a(x)$ is the inverse of $f(x) = a^x$ if a > 0, $a \neq 1$.
- 5. The function f(x) = 1/x is its own inverse.
- 6. The absolute value $|\cdot|$ doesn't have an inverse.

QUESTION 6 Do either f or g have an inverse? If so, find it. C c_1 a_1 a_2 c_2 $\rightarrow c_3$ b_3 a_3

Answer

f		
x	y	
a_1	b_1	
a_2	b_2	
a_3	b_2	

f^{-1} doesn't exist		
\overline{x}	y	
b_1	a_1	
b_2	a_2 or a_3 ?	
b_3	?	

$\underline{}$		
x	y	
b_1	c_1	
b_2	c_2	
b_3	c_3	

g^{-1}		
x	y	
c_1	b_2	
c_2	b_1	
c_3	b_3	

Inverses as Reflections About the 45° Line

$$f: [0, +\infty) \to [0, +\infty), f(x) = x^2$$

Inverses as Reflections About the 45° Line

$$f: (-\infty, 0] \to [0, +\infty), f(x) = x^2$$

$$f(x) = x^2$$

QUESTION 7

Does f have an inverse? If so, find it.

- 1. $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x 1,
- 2. $f: \mathbb{R} \to [1, +\infty)$ given by $f(x) = x^2 + 1$,
- 3. $f:[0,+\infty) \to [1,+\infty)$ given by $f(x) = x^2 + 1$,
- 4. $f: (-\infty, 0] \to [1, +\infty)$ given by $f(x) = x^2 + 1$.

