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Expectation of Discrete Random Variables

What is the average value shown on a six sided die?

y p(y)

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

What is E(Y )?
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Expectation of Discrete Random Variables

In general, for discrete random variables,

E(Y ) =
∑

yp(y)

For this RV,

= 1× 1

6
+ 2× 1

6
+ 3× 1

6
+ 4× 1

6
+ 5× 1

6
+ 6× 1

6
= 3.5
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Expectation of Continuous Random Variables

What about a continuous random variable?

Y ∼ U(0, 2)

f (y) =
1

2− 0

In general,

E(Y ) =

∫ ∞

−∞
y · f (y)dy

For this RV, this becomes

E(Y ) =

∫ 2

0
y · f (y)dy =

∫ 2

0
y · 1

2
dy =

1

2
· 1
2
y2|20 =

1

4
(22 − 02) = 1
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Linearity of Expectation

Simple rules for expectations:

If c is a constant, then E(c) =

c

E(cY ) = c · E(y)
E(Y1 + Y2 + Y3) = E(Y1) + E(Y2) + E(Y3)

In addition, if Y1 and Y2 are independent, then E(Y1 ·Y2) = E(Y1) ·E(Y2)
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Expectation of Functions of Random Variables

Suppose Y is discrete with PDF p(y), and g(Y ) is a function of Y . The
expectation is:

E[g(Y )] =
∑

g(y)p(y)

Next, suppose Y is continuous with PDF f (y), and g(Y ) is a function of
Y . The expectation is:

E[g(Y )] =

∫ ∞

−∞
g(y)× f (y)dy

Is this consistent with the previous rules? What if g(y) = y? If g(y) = cy?
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For the following discrete PDF:

y

g(x)

p(y)

0

0

1/8
1

1

1/4
2

4

3/8
3

9

1/4

Let’s define g(Y ) = y2.

We can take the expectation of g(Y ), because
functions of random variables are also random variables.

What is E(Y 2)?

E(Y 2) =
∑

y2p(y) = 02 × 1

8
+ 12 × 1

4
+ 22 × 3

8
+ 32 × 1

4
= 4
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Discrete Random Variables

Probability distribution for six-sided die:

y p(y)

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

What is E(Y 2)?

Christopher Lucas Expectation and Variance 8 / 1



Discrete Random Variables

The expected value is:

E(Y 2) =
∑

y2p(y)

= 12 × 1

6
+ 22 × 1

6
+ 32 × 1

6
+ 42 × 1

6
+ 52 × 1

6
+ 62 × 1

6

=
91

6
≈ 15.1667

Christopher Lucas Expectation and Variance 9 / 1



Now let’s try one for a continuous random variable.

f (y) =
{

y/2 0 ≤ y ≤ 2

What is E(Y 2)?

Christopher Lucas Expectation and Variance 10 / 1



f (y) =
{

y/2 0 ≤ y ≤ 2

E(Y 2) =

∫ 2

0
y2

y

2
dy =

∫ 2

0

y3

2
dy =

y4

8
|20 =

24

8
= 2
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Variance

One method for describing a PDF is the expectation.

A second feature of a distribution that we are often interested in is
the dispersion, or the extent to which the values of the distribution
are spread out.

Christopher Lucas Expectation and Variance 12 / 1



Variance

One measure of dispersion that we could potentially use:

E[Y − E(Y )] = E(Y − µ)

where we define µ = E(Y ) for convenience. But this measure has a
problem.

E(Y − µ) = E(Y )− E(µ) = µ− µ = 0

One way to get around this is to use squares, which are always
nonnegative.

E[(Y − E(Y ))2] = E[(Y − µ)2] = Var(Y ) = σ2

which we call the variance of Y.
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Variance

The variance for a discrete variable is:

Var(Y ) = σ2 =
∑

(y − µ)2 · p(y)

and for a continuous variable is:

Var(Y ) = σ2 =

∫ ∞

−∞
(y − µ)2f (y)dy

σ =
√

Var(Y ) is called the “standard deviation” and is often easier to
interpret, since it is on the same scale (measured in the same units) as Y

Christopher Lucas Expectation and Variance 14 / 1



Variance

There is also an equivalent but easier to use formula for the variance:

Var(Y ) = E(Y 2)− E(Y )2 = E(Y 2)− µ2

Why?

E[(Y − µ)2] = E(Y 2 − 2µY + µ2)

= E(Y 2)− E(2µY ) + E(µ2)

= E(Y 2)− 2µE(Y ) + µ2

= E(Y 2)− 2µ2 + µ2

= E(Y 2)− µ2

Note that µ is a constant and E(Y ) = µ.
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y p(y)

0 1/8
1 1/4
2 3/8
3 1/4

The expected value is:

E(Y ) =
∑

yp(y) = 0× 1

8
+ 1× 1

4
+ 2× 3

8
+ 3× 1

4
= 1.75

What is the variance?
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Var(Y ) =
∑

(y − µ)2p(y)

= (0− 1.75)2
1

8
+ (1− 1.75)2

1

4
+ (2− 1.75)2

3

8
+ (3− 1.75)2

1

4
= .9375

Or

E(Y 2) =
∑

y2p(y) = 02
1

8
+ 12

1

4
+ 22

3

8
+ 32

1

4
= 4

Var(Y ) =

E(Y 2)− E(Y )2 = 4− 1.752 = 0.9375
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What is the variance for a six-sided die?

E(Y ) = 3.5

E(Y 2) = 91
6 ≈ 15.167

Var(Y ) = E(Y 2)− E(Y )2 =
91

6
− 3.52 ≈ 2.917
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What is average squared distance between two rolls on a six-sided die?

E[(Y1 − Y2)
2] = E[Y 2

1 − 2Y1Y2 + Y 2
2 ] = E[Y 2

1 ]− E[2Y1Y2] + E[Y 2
2 ]

= E[Y 2
1 ]− 2E[Y1]E[Y2] + E[Y 2

2 ] by independence

= E[Y 2]− 2E[Y ]E[Y ] + E[Y 2] = 2E[Y 2]− 2E[Y ]2 = 2Var(Y )
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Rules for Variance

Var(c) = 0

Var(cY ) = c2Var(Y )

Var(Y + c) = Var(Y )

In addition, if Y1 and Y2 are independent, then
Var(Y1 + Y2) = Var(Y1) +Var(Y2)
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Suppose Y is a continuous random variable with mean µ and variance σ2,
and a and b are constants. Solve for the expectation and variance of
(aY + b).

E(aY + b) =

E(aY ) + E(b) = a · E(y) + E(b) = aµ+ b

Var(aY + b) = Var(aY )

= a2Var(Y )

= a2σ2
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Variance of the Binomial Mean
Suppose that p = 0.51 of likely voters support a candidate. You randomly
survey N people, and each time the chances of getting a supporter are

Yi ∼ Bernoulli(p).

What is the expectation of support for a single respondent?
E(Yi ) = 0× (1− p) + 1× p = p = .51

The expected proportion of respondents supporting?
E( 1

N

∑N
i=1 Yi ) =

1
N

∑N
i=1 E(Yi ) =

N
N · E(Yi ) = p = .51

The standard deviation of support for a single respondent?
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Illustration: Causality with Potential Outcomes

Definition (Treatment)

Di : Indicator of treatment intake for unit i , where i = 1, ...,N

Di =

{
1 if unit i received the treatment
0 otherwise

Definition (Observed Outcome)

Yi : Variable of interest whose value may be affected by the treatment

Definition (Potential Outcomes)

Ydi : Value of the outcome that would be realized if unit i received the
treatment d , where d = 0 or 1

Ydi =

{
Y1i Potential outcome for unit i with treatment
Y0i Potential outcome for unit i without treatment
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Causality with Potential Outcomes

Definition (Causal Effect, or Unit Treatment Effect)

Causal effect of the treatment on the outcome for unit i is the difference
between its two potential outcomes:

τi = Y1i − Y0i

Note that observed outcomes are realized from potential outcomes as

Yi = YDi i = DiY1i + (1− Di )Y0i so Yi =

{
Y1i if Di = 1
Y0i if Di = 0

Fundamental Problem of Causal Inference (Holland 1986):

We can never observe both Y1i and Y0i for the same i

This makes τi unidentifiable without further assumptions.
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Causal Quantities of Interest, or Estimands

Unit-level causal effects are fundamentally unobservable

We instead focus on averages in most situations

Definition (Average treatment effect, ATE)

τATE =
1

N

N∑
i=1

{Y1i − Y0i}

or equivalently
τATE = E[Y1i − Y0i ]

Note that τATE is still unidentified

In the rest of this course, we will consider various assumptions under which
τATE can be identified from observed information

Christopher Lucas Expectation and Variance 25 / 1



Causal Quantities of Interest, or Estimands

Unit-level causal effects are fundamentally unobservable

We instead focus on averages in most situations

Definition (Average treatment effect, ATE)

τATE =
1

N

N∑
i=1

{Y1i − Y0i}

or equivalently
τATE = E[Y1i − Y0i ]

Note that τATE is still unidentified

In the rest of this course, we will consider various assumptions under which
τATE can be identified from observed information

Christopher Lucas Expectation and Variance 25 / 1



Other Causal Estimands

Definition (Average treatment effect on the treated, ATT)

τATT =
1

N1

N∑
i=1

Di {Y1i − Y0i} where N1 =
N∑
i=1

Di

or equivalently τATT = E[Y1i − Y0i |Di = 1]

In words, N1 equals

the number of treated units.

When would τATT ̸= τATE? When Di and Ydi are associated.

Exercise: Define τATC , ATE on the untreated (control) units.

Definition (Conditional average treatment effects)

τCATE (x) = E[Y1i − Y0i |Xi = x ]

where Xi is a pre-treatment covariate for unit i

In words, τCATE (x) is a subgroup effect, treatment effect on units who have
particular characteristics x .
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In words, τCATE (x) is a subgroup effect, treatment effect on units who have
particular characteristics x .
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Illustration: Average Treatment Effect

Suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 ? ?
2 1 1 1 ? ?
3 0 0 ? 0 ?
4 0 1 ? 1 ?

1.5
0.5 0.5

1

What is τATE = E[Y1i − Y0i ]?
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Illustration: Average Treatment Effect

Suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 ? ?
2 1 1 1 ? ?
3 0 0 ? 0 ?
4 0 1 ? 1 ?

E[Yi | Di = 1] 2 1.5
E[Yi | Di = 0] 0.5 0.5

E[Yi | Di = 1]− E[Yi | Di = 0] 1.5 1

What is τATE = E[Y1i − Y0i ]?

Näıve estimator:

τ̃ = E[Yi | Di = 1]− E[Yi | Di = 0] (observed difference in means)

=
3 + 1

2
− 0 + 1

2
= 1.5 Could this be wrong?
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Illustration: Average Treatment Effect

Suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 ? ?
2 1 1 1 ? ?
3 0 0 ? 0 ?
4 0 1 ? 1 ?

E[Y1i ] 1.5
E[Y0i ] 0.5 0.5

E[Y1i − Y0i ] 1

What is τATE = E[Y1i −Y0i ]? We need potential outcomes that we do not
observe!
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Illustration: Average Treatment Effect

Suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 0 ?
2 1 1 1 1 ?
3 0 0 1 0 ?
4 0 1 1 1 ?

E[Y1i ] 1.5
E[Y0i ] 0.5 0.5

E[Y1i − Y0i ] 1

Suppose hypothetically: Y01 = 0,Y02 = Y13 = Y14 = 1.
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Illustration: Average Treatment Effect

Suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 0 3
2 1 1 1 1 0
3 0 0 1 0 1
4 0 1 1 1 0

E[Y1i ] 1.5
E[Y0i ] 0.5 0.5

E[Y1i − Y0i ] 1

τATE = E[Y1i − Y0i ] = E[τi ] =
3 + 0 + 1 + 0

4
= 1.
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Illustration: Average Treatment Effect

Suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 0 3
2 1 1 1 1 0
3 0 0 1 0 1
4 0 1 1 1 0

E[Y1i ] 1.5
E[Y0i ] 0.5 0.5

E[Y1i − Y0i ] 1

τATE = E[Y1i − Y0i ] = E[τi ] =
3 + 0 + 1 + 0

4
= 1.

Why τATE ̸= τ̃? When would they be equal?
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Illustration: Average Treatment Effect on the Treated

Again suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 ? ?
2 1 1 1 ? ?
3 0 0 ? 0 ?
4 0 1 ? 1 ?

E[Y1i | Di = 1] 2
E[Y0i | Di = 1] 0.5

E[Y1i − Y0i | Di = 1] 1.5

What is τATT = E[Y1i − Y0i | Di = 1]?
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Illustration: Average Treatment Effect on the Treated

Again suppose we observe a population of 4 units:

i Di Yi Y1i Y0i τi
1 1 3 3 0 3
2 1 1 1 1 0
3 0 0 1 0 1
4 0 1 1 1 0

E[Y1i | Di = 1] 2
E[Y0i | Di = 1] 0.5

E[Y1i − Y0i | Di = 1] 1.5

τATT = E[Y1i − Y0i | Di = 1] = E[τi | Di = 1] =
3 + 0

2
= 1.5.

Why does τATT ̸= τATE?
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