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Abstract

Ecological inference is the problem of estimating individual-level behavior from aggre-

gate data. In this article I propose and apply a new statistical model that provides a

solution to the ecological inference problem under two conditions: 1) geographic space is

divided into regions, and aggregate data comes from random samples of individuals from

each region; 2) variation in individual-level behavior is spatially smooth, i.e., individuals

who are geographically close behave similarly (in aggregate). As an application, I use the

model to estimate voter transition rates in Argentina’s 2015 presidential election. The

results provide evidence that there is substantive spatial variation in the transition rates,

and that it can be explained by structural territorial cleavages, local coalitional patterns

and class segregation in urban settings.

1 Introduction

Ecological inference is the problem of estimating individual-level behavior from aggregate data.

More specifically, given two discrete variables indicating distinct behaviours of individuals in

a population divided into p units, the problem consists in estimating the unobserved interior

cells of the contingency tables at each unit given the observed row and column marginals.

This problem has applications in Voting Rights litigation, electoral behavior, epidemiology,

marketing, political campaigning, and economics (King, 1997).

Ecological inference is, and will remain, an unsolvable problem in its general formulation. It

is described as an “ill-posed inverse problem” by Cho and Judge (2008), plagued by indetermi-

nacy. However, lots of methodological strategies have been devised since Goodman’s landmark

∗Please send me an email to dodykjuan@gmail.com if you are interested in the code and data used for the
article.
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paper (1953) to provide answers to concrete instances of it. These strategies include determin-

istic inferences, statistical models, information-theoretical approaches, and the incorporation

of survey data (King et al, 2004; Cho and Manski, 2008; Klima et al., 2015). These methods

come with trade-offs, one of which is that the inferential power required by applications comes

at the cost of strong assumptions, which can be difficult to test in general.

In this paper I propose a new approach, inspired by machine learning methods, that is

tailored to the Argentine electoral data but can be extended to other contexts. This model is

based on the Multinomial-Dirichlet (MD) model (Rosen et al, 2001), and admits nonparametric

variation in its parameters, only constrained by a very general spatial smoothness condition. I

use it to model spatial dependence in a novel way, that allows the estimation of R × C tables

directly1.

To illustrate the methodology, I use the proposed model to analyze the data of the 2015

Argentine presidential elections. I show how the majority of the vote that Mauricio Macri was

able to muster in the runoff was assembled incrementally in three stages. To that end I provide

point-estimates of voter transition rates between these stages. Since territorial cleavages were in

play in the election (Freytes and Niedzwiecki, 2016) and were a decisive factor in the transition

of the vote share of Sergio Massa, a pivotal candidate, to the runoff candidates, this provides an

opportunity to test the method in a real scenario in which extreme spatial heterogeneity affects

the modeling. This also lets me make a substantive contribution: the model results provide

evidence that structural territorial cleavages, local coalitional patterns and class segregation in

urban settings had a strong impact on voter transition rates.

2 Ecological inference: models and assumptions

In this section I will introduce notation to formulate the problem and review some methods

proposed to approach it, leading to the Multinomial-Dirichlet (MD) model of Rosen et al.

(2001), on which I will later work. I will focus on the fundamental ideas underlying the

statistical models and the assumptions on which they depend.

1For previous statements of the challenge of spatial dependence for ecological inference and proposed strate-
gies see Anselin and Cho (2002), Calvo and Escolar (2003), Haneuse and Wakefield (2004).
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Notation. I will follow the notation of Rosen et al (2001) and will interpret the parameters

in terms of voter transition rates in the context of the 2015 Argentine presidential elections.

Argentine voting-age population was divided into geographic units called circuitos electorales

(electoral precincts). In each precinct, people were randomly assigned to voting booths2. Elec-

toral authorities publish voting results for each voting booth. Thus, we have a voting-age

population divided into these p ≈ 90, 000 units (voting booths), and we have the following data

for each unit i (i = 1, . . . , p): counts Ni of people assigned to that unit, fractions Xir of people

who voted for candidate r (r = 1, . . . , R − 1) in the first election, with XiR = 1 −
∑R−1

r=1 Xir

corresponding to absentees or blank votes, and fractions Tic of people who voted for candidate

c (c = 1, . . . , C − 1) in the second election, with, again, TiC = 1 −∑C−1
c=1 Tic. The unobserved

quantities βi
rc (r = 1, . . . , R, c = 1, . . . , C) are the fraction of candidate-r voters in the first

election who voted for candidate c in the second election. We have
∑C

c=1 β
i
rc = 1 for all r, i,

βi
rc ≧ 0 for all r, c, i, and the accounting identity Tic =

∑R
r=1 β

i
rcXir.

Let

Brc =

∑p
i=1 β

i
rcXirNi

∑p
i=1 XirNi

be the fraction of people in the population who voted for candidate r in the first election that

voted for candidate c in the second election. Ecological inference is the problem of estimating

these (global) quantitiesBrc that fill the voter transitionR×C table using the marginalsXir, Tic.

We will aid inference by including covariates Zik (k = 1, . . . , K) measuring quantity k at unit i,

and geographic information about the units (spatial coordinates, ascription to administrative

regions –precinct, district, province–, contiguity relations and distances between them).

The method of bounds. Duncan and Davis (1953) proposed a deterministic approach to

the estimation problem. The idea is to obtain logical bounds for the true quantities βi
rc at each

2Electoral authorities assign people to voting booths following the lexicographical order of their surnames. I
assume that this assignment is statistically independent of voting behavior at the precinct level. In other words,
the order of the first letters of people’s surnames is not correlated with any determinant of electoral choice.
Thus, even though the assignment is deterministic, it is as if it were random with respect to voting behavior.
Note, however, that while individuals assigned to a voting booth have electoral preferences that can be seen as
random samples from the distribution of preferences among the precinct population, they are not independent
samples, since families, having the same surname, tend to vote in the same booth, and share conditions that
shape their vote choice. We can therefore expect the distribution of the election results at the ballot box level
to have the same mean but higher variance than the corresponding hypergeometric distribution.
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unit and use them to obtain bounds for Brc. Concretely, we can easily prove that

βi
rc ∈

[

max{0, Xir + Tic − 1}
Xir

,
min{Xir, Tic}

Xir

]

,

so

Brc ∈
[∑p

i=1 max{0, Xir + Tic −Ni}Ni
∑p

i=1 XirNi

,

∑p
i=1 min{Xir, Tic}Ni
∑p

i=1 XirNi

]

.

Goodman’s model. The first statistical approach to the ecological inference problem was

proposed by Goodman (1953, 1959). It rests on the constancy assumption: E(βi
rc|Xi) = Brc

for all units i, where Brc =def E(β
i
rc). Under that assumption we have

E(Tic|Xi) = E

(

R
∑

r=1

βi
rcXir|Xi

)

=
R
∑

r=1

E(βi
rcXir|Xi) =

R
∑

r=1

BrcXir,

and therefore the estimator B̂ = (X tX)−1X tT is unbiased, provided X tX is nonsingular.

Moreover, under the following (mildly) stronger assumptions B̂ is also consistent and asymp-

totically normal3 (a) independence of βi for different i; (b) regularity: plim
p→∞

1
p
X tX = Q

and plim
p→∞

1
p
X tDX = R are nonsingular matrices, where D ∈ R

p×p is diagonal with Dii =

XiV (βi
•c|Xi)X

t
i , V (·) is the variance operator, and βi

•c = (βi
1c, . . . , β

i
Rc). Also, although B̂rc es-

timates the mean voter transition rate E(βi
rc), not the population transition rate Brc, we have

plimBrc = Brc by the weak law of numbers as long as (βi, Xi, Ni) are independent, identically

distributed and Ni are bounded.

If we restrict our population to an Argentine electoral precinct, in which voters are randomly

assigned to voting booths, the main assumption of Goodman’s model is justified. In effect,

the distribution of the number of candidate-c voters among the candidate-r voters assigned

to voting booth i, given that the number of candidate-r voters is XirNi, is hypergeometric

with mean BrcXirNi. In other words, once we fix the fraction of candidate-r voters in the

sample as Xir, the expected fraction of candidate-c voters among those will be Brc. Therefore,

E(βi
rc|Xir) = Brc, which implies the constancy assumption and that Brc = Brc for all r, c.

Moreover, while the stronger assumptions needed for statistical inference may not hold exactly,

3The proof is a straightforward variation of the proof of consistency and asymptotic normality of the OLS
estimator (see, e.g., Greene, 2011). Asimptotic normality means that

√
p(B̂•c −B•c) converges in distribution

to a multivariate normal with zero mean and variance Q−1RQ−1.
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independence (condition a) is approximately correct and regularity (condition b) is reasonable.

Why might the constancy assumption fail? I identify two general reasons. First, there may

be a causal connection linking Xi to βi
rc. Concretely, for the second election local political

leaders might pursue different campaigns targeted to voters from different electoral precincts

depending on the results of the first election at each place. For example, they might attempt

to increase turnout in precincts where the first-election results were favorable and to decrease

it elsewhere. Another possible causal link is the following: voters might make strategic voting

decisions for the second election conditional on first-election results at the local level (see

Calvo and Escolar, 2003). I identify a second general reason: there may be a joint effect of

sociodemographic and local-political variables Zi both on Xi and βi
rc, leading to a spurious

correlation:

Xi βi
rc

Zi

__

>>

In addition, independence between units (condition a) may fail as a result of spatial autocor-

relation.

Goodman (1959) offers ways to model violations to the constancy assumption. He al-

lows a covariate Zir to explain the variation of βi
rc between units, leading to the assumption

E(βi
rc|Xi) = Brc + δrcZir and the linear model

E(Tic|Xi) =
R
∑

r=1

XirBrc +
R
∑

r=1

XirZirδrc.

Note, however, that we can not model the variation of E(βi
rc|Xi) directly as a linear function

of Xir because the model becomes non-identifiable (see Goodman, 1959, p. 623).

The Multinomial-Dirichlet model. In 2001, Rosen, Jiang, King and Tanner published an

article proposing the Multinomial-Dirichlet (MD) model, which is an extension of the Binomial-

Beta model of King, Rosen and Tanner (1999) to R × C tables. It uses the information on

bounds for the local parameters βi
rc (in contrast to Goodman’s model), admits and explicitly

models the variation among the βi
rc|Xi for different i, and incorporates covariates in a natural

way. It is a hierarchical model. At the first level, for each unit i, (T1iNi, . . . , TCiNi) is modeled as
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following a multinomial distribution (independent across units) with count Ni and parameters

(θi1, . . . , θ
i
C), with θic =

∑R
r=1 β

i
rcXir. At the second level, for each unit i and each row r, the

vector (βi
r1, . . . , β

i
rC) is modeled as following a Dirichlet distribution (independent across units

and rows, i.e., different values of i and r) with parameters (dr exp(γrc+δrcZi), . . . , dr exp(γr,C−1+

δr,C−1Zi), dr).
4 Finally, at the third level, the variables dr (r = 1, . . . , R) follow independent

exponential distributions with means 1/λ for a fixed λ (or, in the version implemented by Lau,

Moore and Kellerman (2007), Gamma distributions with fixed parameters λ1, λ2). If one uses

Bayesian inference to derive posterior distributions of the parameters of interest γrc (and δrc if

there is a covariate), one can put flat or normal priors on them.

Note that the assumptions on which Goodman’s model rested, i.e., constancy, independence

between units, and regularity, are also needed to guarantee inferences based on the Multinomial-

Dirichlet model (for the regularity condition, see Proposition 1 in Rosen et al, 2001, p. 144).

The constancy assumption can only be relaxed if the variation of βi
rc|Xi is precisely modeled

through a measured covariate, as in Goodman (1959). Klima et al (2015) provide evidence

that the assumptions are to some extent necessary: under extreme spatial heterogeneity or

aggregation bias (which breaks the constancy assumption) the estimates of the quantities Brc

are severely off the mark. However, they also show that the MD model compares favorably to

other statistical models for R×C tables on voter transition synthetic data, even under extreme

model violations.

Nonlinear least squares. The nonlinear least squares estimator for the MD model is based

on first moments: if η is defined as (γrc, δrc)
R,C
r,c=1,1, then E(Tci|η) =

∑R
r=1 E(β

i
rc|η)Xir, where

E(βi
rc|η) =

exp(γrc + δrcZi)

1 +
∑C−1

j=1 exp(γrj + δrjZi)
.

4If there is not a covariate, plug Zi = 0 in the parameter vector. Note that, unlike in Goodman (1959)

model, the covariate has a linear effect not directly on βi
rc but on the log-odds ratio: log

(

E(βi

rc
)

E(βi

rC
)

)

= γrc+ δrcZi;

this makes the model identifiable for almost all parameters (in the sense of Lebesgue) even if one takes Xir

as the covariate. However, Rosen et al (2001, p. 145) recommend to use a nonlinear transformation, since
non-identification occurs in the crucial case where δ = 0, and thus the model cannot be used to test the null
hypothesis of no effect of Xi.
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This leads to the least squares estimate η̂ = argminηSS(η), where

SS(η) =

p
∑

i=1

C−1
∑

c=1

(Tci −mi
c(η))

2

and mi
c(η) = E(Tci|η). Note that although the model allows for random variation in the

βi
rc for different units i, that variation is only captured by this first-moment method through

Zi. Moreover, if there is no covariate (or, equivalently, Zi = 0 for all units i), the estimator

is exactly equal (if uniquely determined by the optimization problem) to a constrained linear

least squares estimator, i.e., a Goodman least squares estimator constrained so that Brc ∈ (0, 1)

and
∑C

c=1 Brc = 1. In effect, in that case we have

SS(η) =

p
∑

i=1

C−1
∑

c=1

(

Tci −
R
∑

r=1

BrcXri

)2

,

whereBrc =
exp(γrc)

1+
∑C

j=1
exp(γrj)

, but the function f(η) = (Brc)
R,C
r,c=1,1 is a bijection between R

R×(C−1),

the space of possible values of η, and the set

B =

{

B ∈ (0, 1)R×(C−1) | 1−
C−1
∑

c=1

Brc ∈ (0, 1) for r = 1, . . . , R

}

,

the space of possible values of B. Indeed, a trivial computation shows that g : B → R
R×(C−1)

given by g(B) =

(

log

(

Brc

1−
∑C−1

j=1
Brj

))R,C

r,c=1,1

is the inverse of f . This lets us formulate the

nonlinear least squares estimator when no covariate is present as a solution to the following

quadratic programming problem:

minimize

p
∑

i=1

C−1
∑

c=1

(

Tci −
R
∑

r=1

BrcXir

)2

subject to Brc ∈ (0, 1), 1−
C−1
∑

c=1

Brc ∈ (0, 1).

There are efficient algorithms to solve this problem, and are preferable to general iterative

optimization methods for numerical reasons (e.g. methods like L-BFGS are sensitive to the

starting point).5

5I implemented this algorithm in R. Please request the code if you are interested.
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3 Models for spatial variation

The statistical methods described in the previous section attempt to model the variation in

E(βi|Xi) parametrically in terms of measured covariates or nonlinear transformations of Xi.

In this section I will propose an alternative strategy. If we assume that the link between

Xi and βi
rc is a consequence of common determinants that are a function of spatial location

(local politics, sociodemographic variables) then we can break that link conditioning by the

geographic position of the units i. In fact, as I argued for the case of Argentine electoral

precincts, the constancy assumption holds if we maintain the location of voters constant. This

justifies obtaining estimators for voter transition rates for each location using Gooodman’s or

the MD model, and then aggregating them to estimate the population parameters. However,

this has two obvious limitations. First, there may not be enough observations at each location

to obtain reliable estimates, or even an estimate at all in the (reasonable) case of less than

R observations. Second, it prevents the model from “borrowing strength” across space. Now,

under the assumption that the variables that determine and link Xi and βi
rc are in some sense a

smooth function of the geographic coordinates of the unit i, i.e., that units that are contiguous

or close behave similarly, we can devise semiparametric models that admit variation in E(βi
rc|Xi)

but do not require a specific functional form for it nor measurements for the relevant covariates.

That is the strategy that I will follow in the rest of the article. I will describe three models

in this section that implement these ideas.

Regularization. Suppose the geographic space is divided into regions R1, . . . ,RS that form

a partition of the set of units: {1, . . . , p} =
⊔S

s=1 Rs. In the case of Argentine elections,

the regions are electoral precincts (circuitos), and the units are voting booths (mesas). We

model vote transitions in each region as separate MD models without covariates. Let γs be the

parameter γ of the MD model for region s. We assume that the total variation between the

parameters γs for regions that are contiguous or close is bounded. Concretely, we define

TV (γ) =
S
∑

s,t=1

wst‖γs − γt‖2,
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where ‖ · ‖ is the Frobenius norm, i.e., ‖γ‖2 =
∑R

r=1

∑C
c=1 γ

2
rc, and the weights wst measure

how much we penalize the difference between regions s and t. We can take the weights to be

a decreasing function of the distance between regions (for example wst = e−d2st/h
2

, where dst

measures the distance between s and t, and h is the bandwidth), or to comprise the adjacency

matrix of a graph where the vertices are the regions and the edges connect contiguous regions,

or a region to its K nearest regions. The spatial smoothness assumption is that TV (γ) ≦ C,

where C is a positive number, a hyper-parameter.

We can provide a nonlinear least squares estimator for the quantities γsrc by minimizing

SS(γ) = 1
p

∑p
i=1

∑C−1
c=1 (Tic −mi

c(γ))
2 under the constraint TV (γ) ≦ C, where

mi
c(γ) = E(Tic|γ) =

R
∑

r=1

exp(γsirc)

1 +
∑C

j=1 exp(γsirj)
Xir

and si is unit i’s region, so that i ∈ Rsi . In order to enforce the smoothness constraint

TV (γ) ≦ C, we minimize SS(γ) + λTV (γ) for a certain λ that depends on C and the data.

Since choosing C and choosing λ is equivalent6, we will focus on λ. We can see TV (γ) as

a regularization term. In order to choose the best λ we can use K-fold cross-validation. To

that end, we subdivide the observations located at each region s into K equally sized samples,

and we then run the model K times, each time leaving aside one of these samples, obtaining

estimators γ̂1, . . . , γ̂K . The cross-validation error is then computed as the average of SSk(γ̂k),

for k = 1, . . . , K, where SSk is computed over the left-out sample for iteration k (i.e., the

observations that were not used for obtaining the estimator γ̂k).

I implemented this method in Python using TensorFlow, an open source software library

for machine learning7, for fast and scalable computation. I use the L-BFGS algorithm to solve

the optimization problem.

Discussion. In this approach we trade bias for variance. We assume (conservatively) that in

each region Goodman’s estimator is unbiased, although it may have high variance. In order

to reduce it, we do two things. First, we employ instead the nonlinear least squares estimator

for the MD model, which guarantees that the parameter estimates lie inside their plausible

6If γ̂ minimizes SS(γ) + λTV (γ), γ̂ also minimizes SS(γ) under the constraint TV (γ) ≦ C, for C = TV (γ̂).
Conversely, varying λ in the first problem we cover all instances of the second problem for all C.

7See tensorflow.org for details.
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domain. Second, we bound the total spatial variation, thus enforcing a smoothness condition

and letting the estimation in region s to borrow strength from its connected regions’ data. The

hyper-parameter λ controls how much spatial structure we impose on the local parameters:

if λ = 0, no spatial structure is imposed, and separate MD models are fit for each region; if

λ → +∞, spatial variation is totally constrained, and the model is equivalent to a single global

MD model; for intermediate values of λ we get a compromise.

To define the measure of spatial variation I take inspiration from the literature on machine

learning over graphs (Herbster, Pontil and Wainer, 2005). The resulting strategy is extremely

flexible, and can be used to model nonparametrically the effects of location in more general

definitions of space. Thus, the “spatial coordinates” may be given, for example, by sociode-

mographic variables or by the configuration of local political coalitions. All that is needed is

a graph (V,E), where V is a partition of the set of units (such that inside each R ∈ V the

constancy assumption holds) and E is a set of connections of those subdivisions in “space”.

Optionally, we can incorporate a measure of the “distance” between those regions in this gen-

eralized notion of space.

Geographically weighted least squares. An alternative to the preceding approach is to

obtain estimates for the local parameters γs in region s by weighting the importance of data

from nearby regions according to their distance to s. Thus we obtain γ̂s by minimizing

S
∑

t=1

∑

i∈Rt

C−1
∑

c=1

wst

(

Tic −
R
∑

r=1

exp(γsrc)

1 +
∑C

j=1 exp(γsrj)
Xir

)2

,

where wst is a decreasing function of distance between regions s and t. This is a nonlinear

least squares version of Geographically Weighted Regression (Fotheringham, Brunsdon and

Charlton, 2002).
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Multilevel Bayesian model. We can model the spatial variation in the MDmodel as follows:

(Ti1Ni, . . . , TiCNi) ∼ Multinomial

(

Ni,

R
∑

r=1

βi
r1Xir, . . . ,

R
∑

r=1

βi
rCXir

)

(βi
r1, . . . , β

i
rC) ∼ Dirichlet (dr exp(γsir1), . . . , dr exp(γsi,r,C−1), dr)

γ•rc ∼ MultivariateNormal(µrc, τ
2
rcΣ)

dr ∼ Exponential(λ)

Here si is the region where unit i belongs (i.e., i ∈ Rsi), γ•rc is the vector (γ1rc, . . . , γSrc),

and Σ ∈ R
S×S is a symmetric positive definite matrix that specifies the structure of spatial

correlation. We can take, for example, Σst = e−d2st/h
2

, where dst measures the distance between

regions s and t, and h is the bandwidth.

In the next section I will show an application of the first model. Since this is still work in

progress, I have not tested models 2 and 3 on real or synthetic data sets yet.

4 Application: 2015 Argentine elections

In 2015, Argentina held a three-stage presidential election leading to the victory of Mauricio

Macri from the Cambiemos (Let’s Change) alliance, integrated by the parties PRO, UCR and

CC-ARI. Cristina Fernández de Kirchner, the incumbent president, had governed for two terms

and was prevented from running again. Her coalition, the kirchnerist FPV (Victory Front),

lost the race after 12 years in power; the candidate was Daniel Scioli, the Province of Buenos

Aires governor. The election was momentous for various reasons. The center-left segment of

the Peronist party, the FPV, lost the presidency to a pro-business coalition (Cambiemos) which

was “programmatically in its antipodes”; moreover, it was the first time a programmatically

centre-right party won democratic elections (Freytes and Niedzwiecki, 2016). It was also the

first time a democratically elected president since World War Two was neither Radical (from

the UCR party) nor Peronist: indeed, “Macri’s PRO is arguably the first Argentine political

party in more than sixty years to establish a true national presence” (Alles, Jones, Tchintian,

2016).
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The first stage of the election was a single-day all party/alliance federal primary that was

mandatory for political parties and alliances, and compulsory for voters (enforced with a small

fine). 15 candidates participated and 3 alliances held competitive primaries (between more

than one candidate). Six candidates won their primaries and got the mandatory 1.5% of the

vote necessary to pass to the next stage. Since no candidate in the second stage (the general

election) got 45% of the vote nor 40% and a margin of 10% over the second place, a runoff

was held (for the first time since it was included in the 1994 Constitution). In this third stage,

Mauricio Macri was finally able to muster a majority of the (valid) votes, winning the election

to Daniel Scioli (FPV) by 51.34%–48.66%.

Table 1: Presidential Vote Shares in Argentina’s 2015 Primary and General Elections

Primary Vote First-Round Runoff Vote

Share (%) Vote Share (%) Share (%)

Scioli 38.7 37.1 48.7

Macri 24.5 34.2 51.3

Sanz 3.3 – –

Carrió 2.3 – –

Massa 14.3 21.4 –

De la Sota 6.3 – –

Stolbizer 3.5 2.5 –

Del Caño 1.7 3.2 –

Altamira 1.6 – –

Rodriguez Saá 2.1 1.6 –

Others 1.8 – –

Note: Turnout for the primary, first round, and second
round was 74.9%, 81.2%, and 80.9% respectively.
Source: Lupu (2016), from Dirección Nacional Electoral.

The first transition: from the primaries to the first round. Macri’s vote majority was

assembled incrementally in this three-stage process. In the first transition, from the first to

the second stage, Macri not only retained his votes and a majority of the votes received by his

coalition allies (Sanz and Carrió) but also almost a half of De la Sota’s and Stolbizer’s votes (see

Table 2). De la Sota, the Province of Cordoba governor and a center-right Peronist distanced

from the kirchnerist government, competed against Sergio Massa in the UNA primary and lost.
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Stolbizer, an ex-UCR congresswoman, ran a center-left campaign on “honesty” which resonated

on middle-class voters who were perceptive to allegations of widespread corruption affecting

the FPV government. Massa increased his vote share, retaining his vote and almost half of his

primary competitor’s vote, and also benefiting from the higher turnout. Scioli did not see an

increase in his share of the valid votes (see Table 1).

Table 2: Voter transition rates from the Primary to the First-Round

Scioli Macri Massa Del Caño Stolbizer Rodriguez Saá No Candidate

Scioli 0.87 – 0.04 – – – 0.09

Macri – 0.96 – – – – 0.04

Sanz 0.01 0.66 – – – – 0.32

Carrió – 0.55 – – 0.07 – 0.37

Massa – – 0.91 0.03 – – 0.05

De la Sota 0.01 0.46 0.39 – – – 0.13

Stolbizer – 0.40 – 0.02 0.31 – 0.27

Del Caño – 0.35 – 0.64 – – 0.01

Altamira – 0.27 0.02 0.37 0.13 – 0.21

Rodriguez Saá – 0.08 0.03 – – 0.81 0.08

Others 0.13 – 0.24 0.10 0.09 – 0.43

No Candidate 0.18 0.13 0.15 0.03 0.03 – 0.48

Zero-valued cells were omitted.

In order to estimate the voter transition rates in Table 2, I computed the nonlinear least

squares estimator for the MD model. I used the quadratic programming formulation of the

problem (Section 2), which was convenient for its numerical robustness and its time perfor-

mance. Running the Bayesian MD model (Section 2) or fitting a more complex model from

Section 3 over the full data set (91,719 voting booths) and such a big table (12× 7) is problem-

atic for performance and numerical limitations of current implementations (Lau, Moore and

Kellermann, 2007 for the Bayesian MD model, and mine for the first model in Section 3).

The second transition: from the first round to the runoff. The position of Sergio Massa

in the first round was pivotal (third place with 21.4% of the vote), but he did not endorse any

of the two candidates for strategic reasons (Murillo, Rubio and Mangonnet, 2016). The main

question, therefore, is how and why the Massa’s votes in the first round were transferred to

Scioli and Macri at the runoff. I will first argue, based on the literature, that spatial effects
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are crucial. Second, I will run the model described in Section 3 to estimate the voter transition

rates in a way that admits spatial variation.

The presidential election was not defined in programmatic terms, i.e., by voters’ ideological

preferences and candidates’ placement along the left-right dimension. In effect, as Calvo and

Escolar (2016) show, voters placed themselves and the runoff candidates’ parties (FPV and

PRO) at the center of the ideological scale. Although differing programmatically (Freytes and

Niedzwiecki, 2016), Scioli and Macri placed themselves in the center during the campaign; e.g.

Scioli promised to gradually lift capital controls implemented by Cristina Fernández de Kirchner

and Macri vowed to maintain popular social policies such as conditional cash transfers. As

Lupu (2016) shows, this was successful: “when the Argentine Panel Election Study (APES),

a national public-opinion survey, asked respondents to place Macri’s PRO on a left-to-right

ideological scale from 0 to 10, they put the party, on average, at 5.7, just right of center. They

placed Scioli’s FPV at 5.3, indistinguishably further to the left.” And, as he says later, “voters

relied on the classic ‘valence issue’ of incumbent performance in making what they viewed as a

choice between continuity and change” (p. 42).

Voters evaluated incumbent performance mainly in economic terms, as Lupu showed (2016).

And, as Freytes and Niedzwiecki (2016) argue, this, plus mounting economic challenges (sluggish

economic growth, high inflation, foreign currency shortage), “deepened territorial cleavages

between the agricultural central region and the peripheral provinces” (p. 3). The voter coalition

that supported the FPV was based on the urban poor and the peripheral, less-developed and

fiscally dependent provinces, the “low-maintenance peripheral coalition” (Gibson and Calvo,

2001). This coalition was maintained by redistributive policies paid for by export taxes on

agricultural rents. “As the economy stagnated, the electorate in the central provinces perceived

the redistribution of agricultural rents to the periphery as a zero-sum game that subtracted

regional wealth without commensurable gains” (Freytes and Niedzwiecki, 2016, p. 8).

The impact of these territorial cleavages can be expected to produce strong spatial effects

on the vote of a pivotal candidate such as Massa, who sought an intermediate position between

“continuity” and “change”. Therefore, in order to estimate the voter transition rates I ran the

first model outlined in Section 3 over the election data. In the rest of the section I will describe

the details of the implementation and the results.
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Implementation details. Argentina is divided into provinces (including the City of Buenos

Aires, counted here as a province); provinces are divided into departamentos (municipalities,

except for the City of Buenos Aires, where they are the comunas); and departamentos are

divided into circuitos (electoral precincts). There are 96339 ballot boxes distributed into 13883

polling stations (schools) from 5703 precincts. There is valid data only for 91671 ballot boxes8.

Since I need multiple observations per precinct in order to perform stratified cross-validation,

I leave out precincts with less than 10 ballot boxes, resulting in 82190 units (∼ 90% of the

total)9. I use polling stations’ geolocation provided by La Nación Data’s team. I use it to

compute the distances dst between precincts s and t defined as the minimum distance between

polling stations u and v from s and t, respectively.

In order to construct the graph that models the spatial relations between precincts, I con-

nect precinct s with its K nearest precincts, where K ∈ N is a parameter that I will choose

later. I then define the weights wst for precincts s and t as e−d2st/h
2

if s and t are adjacent,

and 0 otherwise; h, the bandwidth, is another parameter. I choose this mix between nearest

neighbours and gaussian decay because of the huge heterogeneity of population density across

the country. Polling stations in sparsely populated rural areas require a big bandwidth in order

to borrow strength from near locations’ data. In contrast, metropolitan areas require a smaller

bandwidth in order for the model to capture variation within them. A global bandwidth is

thus not appropriate. Penalizing variation just for the K nearest neighbours introduces the

necessary compromise, and is less costly than finding an optimal adaptive bandwidth for each

location. I ran the model for various values of K and h, under the constraint of the resulting

graph being connected. I found that the model is robust to the specification of K and h. I

chose K = 25 and h = ∞ (i.e., wst = 1 if t is among the nearest 25 precincts to s, and 0

otherwise).

As Figure 1 shows, when we let λ grow, and thus penalization for spatial variation increase,

the in-sample error grows (dashed line). This is expected: as we enforce stricter constraints, the

model is less able to fit the data. However, the cross-validation (CV) error, which is an estimate

8The data corresponds to the escrutinio provisorio (preliminary counting) and is provided by the Dirección
Nacional Electoral (DINE).

9Eliminating 10% of the data may bias the estimation. Indeed, I am leaving out not a random sample, but
data from peripheral or sparsely populated precincts. Inferences will still be valid for the rest of the population.
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Figure 1: 5-fold Cross-Validation errors for λ = 2k, k = −14, . . . , 9.

of the out-of-sample error, decreases until it reaches λ = 2−7, and then it starts growing. That

is because when λ is too small the model overfits the data: it is able to represent very well the

sample, but is incapable of distinguishing between signal and noise. When λ = 0 the model

estimates the local parameters using only the data from voting booths within each precinct,

ignoring the spatial structure. When λ → +∞ the model assumes that the parameters are

constant across precincts, and we get the nonlinear least squares estimator for the MD model.

The fact that the optimal λ (in terms of out-of-sample error) is between these two extremes

provides evidence in favor of the model’s assumptions.

Results. Table 3 shows the estimates for the global voter transition rates. Consistent with

estimates from panel data (Lupu, 2016), a majority of Massa’s votes went to Macri, defining the

election. Are these estimates reliable? In order to partially answer that question, I calculated

stratified Bootstrap confidence intervals. The results are remarkably precise. For example, the

share of Massa’s vote that went to Macri at the runoff varied in the interval [0.522, 0.537]; in

the case of Stolbizer’s vote, the interval was [0.540, 0.589].

A by-product of modeling the spatial variation is that we get estimates for voter transition

rates at each location. In Figure 2 I plot Massa-to-Macri transition rates at each polling station

(dark red means a higher-than-average transition rate; soft yellow means the contrary, i.e., a

high transition rate to Scioli). It can be seen that in the agricultural central region a majority of

Massa’s voters chose Macri at the runoff, while in the peripheral provinces this was reversed. A
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Table 3: Voter transition rates from the First Round to the Runoff

Scioli Macri No Candidate

Scioli 0.90 0 0.10

Macri 0 0.91 0.09

Massa 0.33 0.53 0.14

Del Caño 0.44 0.34 0.22

Stolbizer 0.21 0.56 0.23

Rodriguez Saa 0.35 0.52 0.13

No Candidate 0.22 0.22 0.56

notable exception is Jujuy Province (at the north-west extreme), where there is a concentration

of Massa’s voters that preferred Macri by majority at the runoff. This can be explained by

the political coalition that Massa forged with Cambiemos to sustain the candidacy of Gerardo

Morales (UCR) for governor. Thus, the structural territorial cleavages discussed earlier are not

the sole determinants of spatial variation in the transition rates. Local coalitional dynamics

also shape electoral behavior. Another example of this phenomenon is La Rioja Province, where

Massa also forged a coalition with the UCR’s candidate for governor.

Finally, in Figure 3 I plot Massa-to-Macri transition rates in the Buenos Aires Metropolitan

Area. These transition rates are higher in CABA (at the center) than in the Province of

Buenos Aires districts that surround it, except the affluent municipalities at its north. In the

poorest locations, the share of Massa’s voters who voted for Macri is among the lowest in the

country (∼ 0.25). We can see that there is a huge variation at this level, even across contiguous

precincts. This highlights the class cleavage inside urban areas and its spatial pattern. It also

shows that the model is able to capture this fine-grained variation.

5 Conclusion

The statistical models reviewed in Section 2 assume in their basic form the constancy assump-

tion, i.e., that transition rates βi
rc are mean-independent with respect to the first election results

Xi. This assumption can only be relaxed if the dependence between βi
rc and Xi disappears mod-

eling βi
rc explicitly in terms of a covariate Zi (which can be a nonlinear transformation of Xi).

In the case of Argentina’s elections, voters are randomly assigned to voting booths inside their
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Figure 2: Share of Massa’s voters in the First-Round that voted for Macri at the Runoff.
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Figure 3: Share of Massa’s voters in the First-Round that voted for Macri at the Runoff.
Buenos Aires Metropolitan Area.

electoral precinct, which implies that the constancy assumption holds—at the precinct level.

Therefore, the basic statistical models’ estimators are unbiased inside each precinct, although

their variance may be as high as to make them unreliable. Now, assuming some form of spatial

smoothness in the parameters’ variation leads to a promising strategy: to look for estimators

at each precinct but borrowing strength from observations located sufficiently close (how close

can vary with the population density of the location). In Section 3 I presented three statistical

models that implement this strategy, and applied one of them to the problem of estimating

voter transition rates in the Argentine 2015 presidential election.

The results are promising. The model outperforms the MD nonlinear least squares estima-

tor in terms of out-of-sample error, achieving a balance between total spatial homogeneity and

total spatial heterogeneity (i.e., when each district is modeled as a separate spatial regime).

Moreover, the model provides estimates of the voter transition rates at the precinct level,

which can be interpreted geographically. The variation across space of these quantities pro-

vides evidence of three distinct patterns that lead to interesting substantive hypotheses. First,

the structural territorial cleavage between the agricultural center (inclined for Macri) and the
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peripheral provinces (with a strong linkage to Peronism) had a significant impact on the des-

tination of Massa’s votes at the runoff. Second, in the peripheral provinces in which Massa

formed a coalition with the UCR the majority of his votes benefited Macri. Third, in urban

areas the class cleavage had a strong effect on the transition of Massa’s vote. Incorporating

sociodemographic and local-coalition variables into the model is a future avenue of work that

should provide more evidence for these hypotheses.
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