## Section 9

LEGISLATIVE BARGAINING

Juan Dodyk

Gov 2006 - Harvard
March 26, 2020

## Plan for today

- Go over the details of Austen-Smith and Banks' model of coalition formation.
- Go over the details of Dziuda and Loeper's model of dynamic bargaining with an endogenous status quo.
- If there is time, discuss the implications of legislative bargaining and organization for collective choice.


## Austen-Smith and Banks (1988)

Three parties, $L, M, R$, with ideal points $p_{L}<p_{M}<p_{R}$, and seat shares $w_{L}, w_{M}, w_{R}$. We assume $\max \left\{w_{L}, w_{M}, w_{R}\right\}<\frac{1}{2}$. (Otherwise there is nothing to analyze.)
To form a government you need a majority (i.e., a coalition of at least two parties). The government chooses a policy $y \in \mathbb{R}$ and distributes rents $G$ among the parties in the coalition. Preferences of party $i$ are represented by $u_{i}=-\left(y-p_{i}\right)^{2}+g_{i}$.

Bargaining protocol:

1. The party with the largest seat share proposes a coalition, a policy $y$ and an allocation of $G$. If the members of the coalition accept, a government is formed.
2. Otherwise, the second largest party makes a proposal.
3. If that fails, the third largest party makes a proposal.
4. If that fails, a "caretaker" government forms and gives each party utility 0 .

## Result

For any ordering of $w_{L}, w_{M}, w_{R}$, what happens is that the largest and the smallest parties form a coalition. (In fact, the thing that matters is the order in the bargaining protocol, not the seat share per se.)

How do we prove this? Austen-Smith and Banks do it by brute force: they consider every ordering.

- There is some symmetry: $L$ and $R$ are exchangeable, but the place of $M$ matters.
- There are thus 3 cases: $w_{M}>w_{L}>w_{R}, w_{L}>w_{M}>w_{R}$ (which we did in class) and $w_{L}>w_{R}>w_{M}$.

Let's do $w_{L}>w_{R}>w_{M}$ here.

## Stage 3: $M$ is the formateur

Party $M$ needs to choose a party $j$ to form a coalition, either $L$ or $M$, and choose $y$ and $g_{M}, g_{j} \geq 0$ such that $g_{M}+g_{j} \leq G$.

The problem is to

$$
\begin{array}{cl}
\max & -\left(y-p_{M}\right)^{2}+g_{M} \\
\text { s.t. } & -\left(y-p_{j}\right)^{2}+g_{j} \geq 0 \\
& g_{M}+g_{j} \leq G \\
& 0 \leq g_{M}, g_{j} .
\end{array}
$$

Clearly $g_{M}+g_{j} \leq G$ will bind, because increasing $g_{M}$ is good. Hence $g_{M}=G-g_{j}$. We have $g_{j} \geq\left(y-p_{j}\right)^{2} \geq 0$ and $g_{j} \leq G$. The former will bind, because the lower $g_{j}$, the higher $g_{M}$. Hence we have $g_{j}=\left(y-p_{j}\right)^{2}$, and $\left(y-p_{j}\right)^{2} \leq G$. The problem becomes

$$
\begin{aligned}
\max & -\left(y-p_{M}\right)^{2}+G-g_{j}=-\left(y-p_{M}\right)^{2}-\left(y-p_{j}\right)^{2}+G \\
\text { s.t. } & -\left(y-p_{j}\right)^{2} \geq-G .
\end{aligned}
$$

If we ignore the constraint, we get the solution $y=\frac{1}{2}\left(p_{M}+p_{j}\right)$.
Does this satisfy the constraint? We are assuming that the "caretaker" can choose a policy $\bar{y}$ and transfers $g$ such that $-\left(\bar{y}-p_{i}\right)^{2}+g_{i}=0$, which, summing, implies
$-\sum_{i}\left(\bar{y}-p_{i}\right)^{2}=-\sum_{i} g_{i} \geq-G$. Now,
$-\left(y-p_{j}\right)^{2} \geq-\left(y-p_{M}\right)^{2}-\left(y-p_{j}\right)^{2} \geq-\left(\bar{y}-p_{M}\right)^{2}-\left(\bar{y}-p_{j}\right)^{2} \geq-\sum_{i}\left(\bar{y}-p_{i}\right)^{2} \geq-G$, so $-\left(y-p_{j}\right)^{2} \geq-G$, as desired.
Perfect. Then party $M$ chooses $y=\frac{1}{2}\left(p_{M}+p_{j}\right), g_{j}=\left(y-p_{j}\right)^{2}$, and $g_{M}=G-\left(y-p_{j}\right)^{2}$. Hence

$$
u_{M}=-2\left(y-p_{M}\right)^{2}+G=-\frac{1}{2}\left(p_{j}-p_{M}\right)^{2}+G .
$$

$M$ will choose $j$ to be the party that is closest ideologically.
Let $y_{M}^{*}:=\frac{1}{2}\left(p_{M}+p_{j}\right)$ for future reference.
Note that $M$ gets utility $u_{M}>0$ but her partner gets 0 utility.

## Stage 2: $R$ IS THE FORMATEUR

Two cases. First, $L$ is closest to $M$.
In that case $L$ gets 0 utility if $R$ 's proposal fails, and $y_{M}^{*}=\frac{1}{2}\left(p_{M}+p_{L}\right)$.
If $R$ proposes to $L$, by the same argument as before, $R$ chooses $y=\frac{1}{2}\left(p_{R}+p_{L}\right)$ and $u_{R}=-\frac{1}{2}\left(p_{R}-p_{L}\right)^{2}+G$.
If $R$ proposes to $M$, her problem is to choose $y, g_{R}, g_{M}$ to

$$
\begin{aligned}
\max & -\left(y-p_{R}\right)^{2}+g_{R} \\
\text { s.t. } & -\left(y-p_{M}\right)^{2}+g_{M} \geq-\frac{1}{2}\left(p_{M}-p_{L}\right)^{2}+G \\
& g_{L}+g_{R} \leq G \\
& 0 \leq g_{L}, g_{R} .
\end{aligned}
$$

The constraints must bind, so $g_{R}=G-g_{L}, g_{L}=-\frac{1}{2}\left(p_{M}-p_{L}\right)^{2}+G+\left(y-p_{M}\right)^{2}$.

The problem becomes

$$
\begin{aligned}
\max & -\left(y-p_{R}\right)^{2}+G+\frac{1}{2}\left(p_{M}-p_{L}\right)^{2}-G-\left(y-p_{M}\right)^{2} \\
\text { s.t. } & -\frac{1}{2}\left(p_{M}-p_{L}\right)^{2}+G+\left(y-p_{M}\right)^{2} \leq G .
\end{aligned}
$$

Ignoring the constraint we get an upper bound on what $R$ gets, which is $-\frac{1}{2}\left(p_{M}-p_{R}\right)^{2}+\frac{1}{2}\left(p_{M}-p_{L}\right)^{2}$.

If she proposes to $L, R$ gets $-\frac{1}{2}\left(p_{R}-p_{L}\right)^{2}+G$. By taking $G$ large enough we get that $R$ prefers proposing to $L$.
So, in this case ( $L$ is closest to $M$ ), $R$ proposes to $L$, chooses $y=\frac{1}{2}\left(p_{L}+p_{R}\right)$, and gives $L$ zero utility.

Second case. $R$ is closest to $M$. In this case $L$ is even cheaper, so again $R$ proposes to her. $R$ chooses $y, g_{R}, g_{L}$ to

$$
\begin{array}{ll}
\max & -\left(y-p_{R}\right)^{2}+g_{R} \\
\text { s.t. } & -\left(y-p_{L}\right)^{2}+g_{L} \geq-\left(\frac{p_{M}+p_{R}}{2}-p_{L}\right)^{2} \\
& g_{R}+g_{L} \leq G \\
& 0 \leq g_{R}, g_{L}
\end{array}
$$

We have $g_{R}=G-g_{L}$, so we can re-write this as follows

$$
\begin{align*}
\max & -\left(y-p_{R}\right)^{2}+G-g_{L} \\
\text { s.t. } g_{L} & \geq\left(y-p_{L}\right)^{2}-\left(\frac{p_{M}+p_{R}}{2}-p_{L}\right)^{2}  \tag{1}\\
g_{L} & \geq 0  \tag{2}\\
g_{L} & \leq G
\end{align*}
$$

Either (1) or (2) must bind. We get that $y=\frac{1}{2}\left(p_{M}+p_{R}\right)$ and $g_{L}=0$ - it's cheaper to pay $L$ in policy than in cabinet positions.

## Stage 1: $L$ IS The formateur

In the first stage, $R$ is in a very good bargaining position, and $M$ is in a terrible one, since $R$ will exclude her if $L$ fails. So, $M$ is cheap, and is the closest party. Therefore $L$ chooses $M$. [This is of course not a formal argument.]

There are many cases. In every case we get that $L$ chooses a policy in $\left[p_{L}, p_{M}\right)$. In some cases $g_{M}>0$, but in every case $M$ receives negative utility.

Conclusion. As expected, the largest and smallest parties form a coalition. The policy is somewhere between their ideal points.

## What happens with more than three parties?

Natural question. What happens with more than three parties? I think that the logic extends.

If $G$ is large enough (equivalently, if parties do not care that much about policy) then two things happen: the formateur can buy off any party, and appropriates most of the rents from government.

This implies that the party in line to be the next formateur has a huge continuation value, so the first formateur will never try to include it. She will form a minimal coalition with the rest of the parties.

Which ones? Well, the ones closest ideologically are cheaper, but as we saw the continuation values can be complicated.

## What happens if $G$ IS Small?

The main intuition breaks down. The argument really depends on $G$ being relatively large.
Example. Suppose $G=0, w_{L}>w_{M}>w_{R}, p_{L}=-1, p_{M}=\frac{1}{2}, p_{R}=1$, and the caretaker government chooses $y=-1$. (Or assume that if the three stages fail, $L$ can form a minority government and choose her ideal policy.)

- In the third stage, $R$ chooses $y=1$ and gets $M$ on board.
- In the second stage, $M$ chooses $y=\frac{1}{2}$ and gets $L$ on board.
- In the first stage, $L$ chooses $y=\frac{1}{2}$ and gets $M$ on board.

Takeaways from this example:

- The first and second largest parties form a coalition.
- The "junior partner" dictates policy.
- All this despite the huge ex ante advantage of $L$.


## Dziuda and Loeper (2016)

- Two players, $L, R$.
- Two dates, $t=1,2$.
- A state $\theta_{t} \sim U[-a, a]$ revealed at the start of each date.
- A policy choice $x_{t} \in\{-1,1\}$ chosen by unanimity. Otherwise, the status quo $x_{t-1}$ is implemented.
- Stage payoffs: $u_{L}(x, \theta)=-(x-(\theta-p))^{2}$ and $u_{R}(x, \theta)=-(x-(\theta+p))^{2}$.
- In words, both want to match the state, but are biased. L's ideal policy is $\theta_{t}-p$ and $R$ 's ideal policy is $\theta_{t}+p$. The parameter $p>0$ measures polarization, i.e., the extent of disagreement.
- There are only two actions, so if $L$ only cares about the present, she prefers $x_{t}=1$ iff $-\left(1-\left(\theta_{t}-p\right)\right)^{2} \geq-\left(-1-\left(\theta_{t}-p\right)\right)^{2}$, i.e., iff $\theta_{t} \geq p$.
- If $R$ only cares about the present, she prefers $x_{t}=1 \mathrm{iff} \theta_{t} \geq-p$.
- In sum, if $\theta_{t} \in[-p, p]$ they disagree, but otherwise they agree.


## Enter dynamic considerations

They know that at time $t=2$ the policy $x_{1}$ will be maintained against the will of one of them iff $\theta_{2} \in[-p, p]$.

Suppose that $x_{0}=-1$. This is the policy that $L$ likes most of the time, so she starts with an advantage.

Suppose that $\theta_{1}>p$.
At time $t=1, L$ prefers $x_{1}=1$ to the status quo. But if she agrees to implement $x_{1}=1$, she loses her advantage in the next period.

Concretely, her expected utility at time 1 is

$$
\begin{aligned}
\mathbb{E} u_{L}= & -\left(x_{1}-\left(\theta_{1}-p\right)\right)^{2}-\mathbb{E}\left[\left(x_{2}-\left(\theta_{2}-p\right)\right)^{2}\right] \\
= & -\left(x_{1}-\left(\theta_{1}-p\right)\right)^{2}-\int_{-a}^{a}\left(x_{2}-(\theta-p)\right)^{2} \frac{1}{2 a} d \theta \\
= & -\left(x_{1}-\left(\theta_{1}-p\right)\right)^{2} \\
& -\int_{-a}^{p}(-1-(\theta-p))^{2} \frac{1}{2 a} d \theta-\int_{-p}^{p}\left(x_{1}-(\theta-p)\right)^{2} \frac{1}{2 a} d \theta-\int_{-a}^{a}(1-(\theta-p))^{2} \frac{1}{2 a} d \theta .
\end{aligned}
$$

So, she prefers $x_{1}=1$ to $x_{1}=-1$ iff
$-\left(1-\left(\theta_{1}-p\right)\right)^{2}-\int_{-p}^{p}(1-(\theta-p))^{2} \frac{1}{2 a} d \theta \geq-\left(-1-\left(\theta_{1}-p\right)\right)^{2}-\int_{-p}^{p}(-1-(\theta-p))^{2} \frac{1}{2 a} d \theta$
$4\left(\theta_{1}-p\right)-\int_{-p}^{p} 4(\theta-p) \frac{1}{2 a} d \theta \geq 0$
$\theta_{1} \geq p+\frac{p^{2}}{2 a}$.

As expected, $L$ needs a stronger reason at time 1 to accept $x_{1}=1$, because for $\theta_{1} \in\left(p, p+\frac{p^{2}}{2 a}\right)$, even though she would be better off accepting the reform, she doesn't want to lose her advantage tomorrow.

Note that this is Pareto suboptimal. Both would be better off choosing $x_{1}=1$ for that $\theta_{t}$.

