Section 7

Repeated elections with two parties

Juan Dodyk

Gov 2006 - Harvard
March 11, 2020

Plan

We are going to discuss the following paper:

- Bernhardt, Dan, Larissa Campuzano, Francesco Squintani, and Odilon Câmara. 2009. "On the Benefits of Party Competition." Games and Economic Behavior 66(2): 685-707.

It is the same model as Duggan (2000), only adding two parties, A and B.

- A is the party of left-of-center candidates, i.e., $A=\{x: x<0\}$;
$-B$ is the party of right-wing candidates, i.e., $B=\{x: x>0\}$.
- In each election, if the incumbent is of party A (say), then the challenger is a randomly selected member of party B (instead of from the whole population as in Duggan).

The main result:

- Every voter is better off having parties!

The model

- At each time k an incumbent chooses a policy $x_{k} \in I=[-1,1]$.
- Citizens have types symetrically distributed with density f over I.
- Per-period utility from policy x for type t is $u_{t}(x)=-|x-t|$.
- There are two parties: $A=[-1,0)$ and $B=[0,1]$.
- They alternate in power unless the incumbent is reelected.
- In each period there is an election; if the incumbent gets $\geq \frac{1}{2}$ of the votes, she keeps office.
- The challenger is selected at random from the opposition party.
- Every citizen's discount factor is $\delta \in(0,1)$.

Equilibrium

We look for a stationary PBE with the following characteristics:
$-I$ is partitioned into $W=[-w, w], C=[-c, c] \backslash W, E=I \backslash C$, with $0<w<c<1$.

- Each candidate of type t chooses policy $x=p_{t}$, where

$$
p_{t}=\left\{\begin{array}{l}
t, \text { if } t \in W \cup E, \\
-w, \text { if } t \in[-c,-w), \text { and } \\
w, \text { if } t \in(w, c]
\end{array}\right.
$$

if she is in office.

- If the voters see an off-equilibrium policy x, i.e., $x \in C$, then they assume that $t=x$.
- The incumbent wins iff $x \in W$.

Let's check that these strategies are part of a PBE for some w, c.

The voters' DECISIon

Take the strategies of candidates as given.
Let x be the type of the incumbent, and let \bar{x} be the type of a voter.
Let's assume that $x<0$, i.e., $x \in A$.
The utility from retaining x is $u_{\bar{x}}\left(p_{x}\right)$.
The utility from choosing a random challenger from B is

$$
\begin{aligned}
U_{\bar{x}}^{B}=\operatorname{Pr}(t \notin E \mid t \in B) \mathbb{E}[& \left.u_{\bar{x}}\left(p_{t}\right) \mid t \in B \backslash E\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)\left\{(1-\delta) \mathbb{E}\left[u_{\bar{x}}\left(p_{t}\right) \mid t \in B \cap E\right]+\delta U_{\bar{x}}^{A}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& U_{\bar{x}}^{A}=\operatorname{Pr}(t \notin E \mid t \in A) \mathbb{E}\left[u_{\bar{x}}\left(p_{t}\right) \mid t \in A \backslash E\right]+ \\
& \quad+\operatorname{Pr}(t \in E \mid t \in A)\left\{(1-\delta) \mathbb{E}\left[u_{\bar{x}}\left(p_{t}\right) \mid t \in A \cap E\right]+\delta U_{\bar{x}}^{B}\right\} .
\end{aligned}
$$

So, \bar{x} votes to retain $x \in A$ iff $u_{\bar{x}}(x) \geq U_{\bar{x}}^{B}$.
Similarly, \bar{x} votes to retain $x \in B$ iff $u_{\bar{x}}(x) \geq U_{\bar{x}}^{A}$.
We can do the same that we did in lecture: prove that the median voter decides by first bounding

$$
\frac{\partial U_{\bar{x}}^{A}}{\partial \bar{x}} \text { and } \frac{\partial U_{\bar{x}}^{B}}{\partial \bar{x}}
$$

where $U_{\bar{x}}^{A}, U_{\bar{x}}^{B}$ are differentiable. (They are for all but finitely many points.)

We have

$$
\begin{aligned}
U_{\bar{x}}^{B}= & \operatorname{Pr}(t \notin E \mid t \in B) \mathbb{E}\left[u_{\bar{x}}\left(p_{t}\right) \mid t \in B \backslash E\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)\left\{(1-\delta) \mathbb{E}\left[u_{\bar{x}}\left(p_{t}\right) \mid t \in B \cap E\right]+\delta U_{\bar{x}}^{A}\right\}= \\
= & \operatorname{Pr}(t \in W \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in W \cap B\right]+ \\
& +\operatorname{Pr}(t \in C \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in\{-w, w\} \cap B\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in E \cap B\right]+ \\
& +\beta U_{\bar{x}}^{A}= \\
= & \operatorname{Pr}(t \in W \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in W \cap B\right]+ \\
& +\operatorname{Pr}(t \in C \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in\{-w, w\} \cap B\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in E \cap B\right]+ \\
& +\beta \operatorname{Pr}(t \in W \mid t \in A) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in W \cap A\right]+ \\
& +\beta \operatorname{Pr}(t \in C \mid t \in A) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in\{-w, w\} \cap A\right]+ \\
& +\beta \operatorname{Pr}(t \in E \mid t \in A)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in E \cap A\right]+ \\
& +\beta^{2} U_{\bar{x}}^{B},
\end{aligned}
$$

where $\beta=\operatorname{Pr}(t \in E \mid t \in B) \delta=\operatorname{Pr}(t \in E \mid t \in A) \delta$.

$$
\begin{aligned}
U_{\bar{x}}^{B}= & \operatorname{Pr}(t \in W \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in W \cap B\right]+ \\
& +\operatorname{Pr}(t \in C \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in\{-w, w\} \cap B\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in E \cap B\right]+ \\
& +\operatorname{Pr}(t \in W \mid t \in B) \mathbb{E}\left[\beta u_{\bar{x}}(-t) \mid t \in W \cap B\right]+ \\
& +\operatorname{Pr}(t \in C \mid t \in B) \mathbb{E}\left[\beta u_{\bar{x}}(-t) \mid t \in\{-w, w\} \cap B\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)(1-\delta) \mathbb{E}\left[\beta u_{\bar{x}}(-t) \mid t \in E \cap B\right]+ \\
& +\beta^{2} U_{\overline{\bar{x}}}^{B}= \\
= & \operatorname{Pr}(t \in W \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t) \mid t \in W \cap B\right]+ \\
& +\operatorname{Pr}(t \in C \mid t \in B) \mathbb{E}\left[u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t) \mid t \in\{-w, w\} \cap B\right]+ \\
& +\operatorname{Pr}(t \in E \mid t \in B)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t) \mid t \in E \cap B\right]+ \\
& +\beta^{2} U_{\bar{x}}^{B} .
\end{aligned}
$$

After solving for $U_{\bar{x}}^{B}$ we can re-write this as

$$
U_{\bar{x}}^{B}=\sum_{i=1}^{3} \omega_{i} \mathbb{E}\left[\left.\frac{u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t)}{1+\beta} \right\rvert\, t \in S_{i}\right]
$$

for some $\omega_{1}, \omega_{2}, \omega_{3} \in[0,1]$ s.t. $\sum_{i=1}^{3} \omega_{i}=1$, and $S_{i} \subset B$.
Now, for $t \geq 0$,

$$
\frac{\partial}{\partial \bar{x}} \frac{u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t)}{1+\beta}= \begin{cases}1, & \text { if } \bar{x}<-t \\ \frac{1-\beta}{1+\beta} \in(0,1), & \text { if } \bar{x} \in(-t, t) \\ -1, & \text { if } \bar{x}>t\end{cases}
$$

So, if $\bar{x} \leq 0$, we have $0 \leq \frac{\partial}{\partial \bar{x}} \frac{u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t)}{1+\beta} \leq 1$, and if $\bar{x}>0$, we have
$-1 \leq \frac{\partial}{\partial \bar{x}} \frac{u_{\bar{x}}(t)+\beta u_{\overline{\bar{x}}}(-t)}{1+\beta} \leq 1$.
Applying Leibniz Rule, we get that if $\bar{x} \leq 0$ then $0 \leq \frac{\partial U_{\vec{B}}^{B}}{\partial \bar{x}} \leq 1$, and if $\bar{x}>0$ then $-1 \leq \frac{\partial U_{\bar{x}}^{B}}{\partial \bar{x}} \leq 1$.

We can do the same thing for $U_{\bar{x}}^{A}$:

$$
\begin{aligned}
U_{\bar{x}}^{A}= & \frac{1}{1-\beta^{2}}\left\{\operatorname{Pr}(t \in W \mid t \in A) \mathbb{E}\left[u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t) \mid t \in W \cap A\right]+\right. \\
& +\operatorname{Pr}(t \in C \mid t \in A) \mathbb{E}\left[u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t) \mid t \in\{-w, w\} \cap A\right]+ \\
& \left.+\operatorname{Pr}(t \in E \mid t \in A)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t)+\beta u_{\bar{x}}(-t) \mid t \in E \cap A\right]\right\} .
\end{aligned}
$$

where $\beta=\operatorname{Pr}(t \in E \mid t \in A) \delta$.
We get that if $\bar{x}<0$ then $-1 \leq \frac{\partial U_{\bar{x}}^{A}}{\partial \bar{x}} \leq 1$, and if $\bar{x} \geq 0$ then $-1 \leq \frac{\partial U_{\bar{x}}^{A}}{\partial \bar{x}} \leq 0$.
Also, note that $u_{\bar{x}}(t)$ is concave in \bar{x} for any t (positive or negative), so $U_{\bar{x}}^{A}$ and $U_{\bar{x}}^{B}$ are concave.

The median voter is Decisive

Suppose that $t<0$ and $u_{0}(t)-U_{0}^{B}>0$, i.e., the median type votes to reelect the incumbent. We will show that every $\bar{x}<0$ does as well.
For $t \leq \bar{x}<0$, we have $u_{\bar{x}}(t) \geq u_{0}(t)$ and $U_{\bar{x}}^{B} \leq U_{0}^{B}$ (since we proved that $\frac{\partial U_{\bar{x}}^{B}}{\partial \bar{x}} \geq 0$ for $\bar{x}<0)$, so $u_{\bar{x}}(t)-U_{\bar{x}}^{B} \geq u_{0}(t)-U_{0}^{B}>0$, as desired.

For $\bar{x}<t$, note that $u_{\bar{x}}(t)=-(t-\bar{x})$ is linear in \bar{x}, so $u_{\bar{x}}(t)-U_{\bar{x}}^{B}$ is convex, hence to prove that $u_{\bar{x}}(t)-U_{\bar{x}}^{B}>0$ for all $\bar{x} \in[-1, t]$ it's enough to prove it for both endpoints.

We already did $\bar{x}=t$, so we just need to check that $u_{-1}(t)-U_{-1}^{B}>0$. Now, looking back at the formula for $U_{\bar{x}}^{B}$ and plugging $\bar{x}=-1$ we can see that $U_{-1}^{B}<-1$, but $u_{-1}(t)=-(t+1) \geq-1$, so $u_{-1}(t)-U_{-1}^{B}>0$, as desired.

Suppose that $t<0$ and $u_{0}(t)-U_{0}^{B}<0$, i.e., the median type votes for the opposition. We will show that every $\bar{x}>0$ does as well.

We have

$$
U_{\bar{x}}^{B}-U_{0}^{B}=\int_{0}^{\bar{x}} \frac{\partial U_{x}^{B}}{\partial x} d x \geqq \int_{0}^{\bar{x}}(-1) d x=-\bar{x},
$$

and $u_{\bar{x}}(t)-u_{0}(t)=-\bar{x}$, so

$$
u_{\bar{x}}(t)-U_{\bar{x}}^{B} \geq u_{0}(t)-\bar{x}-\left(U_{0}^{B}-\bar{x}\right)>0
$$

as desired.
Proving that the median type is decisive for $t>0$ is similar.

The median voter's decision

An incumbent choosing policy $t<0$ is reelected iff $u_{0}\left(p_{t}\right) \geq U_{0}^{B}$, and $t>0$ iff $u_{0}\left(p_{t}\right) \geq U_{0}^{A}$. We have

$$
\begin{aligned}
U_{0}^{A}= & \frac{1}{1-\beta^{2}}\left\{\operatorname{Pr}(t \in W \mid t \in A) \mathbb{E}\left[u_{0}(t)+\beta u_{0}(-t) \mid t \in W \cap A\right]+\right. \\
& +\operatorname{Pr}(t \in C \mid t \in A) \mathbb{E}\left[u_{0}(t)+\beta u_{0}(-t) \mid t \in\{-w, w\} \cap A\right]+ \\
& \left.+\operatorname{Pr}(t \in E \mid t \in A)(1-\delta) \mathbb{E}\left[u_{0}(t)+\beta u_{0}(-t) \mid t \in E \cap A\right]\right\} \\
= & \frac{-1}{1-\beta}\{\operatorname{Pr}(t \in W \mid t \in A) \mathbb{E}[t \mid t \in[0, w]]+ \\
& +\operatorname{Pr}(t \in C \mid t \in A) w+\operatorname{Pr}(t \in E \mid t \in A)(1-\delta) \mathbb{E}[t \mid t \in(c, 1]]\},
\end{aligned}
$$

and $U_{0}^{B}=U_{0}^{A}$.

Hence, t is reelected iff $-\left|p_{t}\right| \geq U_{0}^{A}$.
This implies that $U_{0}^{A}=-w$, because if $U_{0}^{A}<-w$ then $t>w$ would choose $p_{t}=t$ instead of $p_{t}=w$, and if $U_{0}^{A}>-w$ then $t=w$ would not win when choosing $p_{t}=w$.
We have our first equilibrium condition: $U_{0}^{A}=-w$.

The incumbent's decision

If $t \in W=[-w, w]$, she can choose $x=t$ and win, so she will.
If $t \in(w, c]$, we need that $u_{t}(w) \geq(1-\delta) u_{t}(t)+\delta U_{t}^{A}$, i.e., $u_{t}(w) \geq \delta U_{t}^{A}$.
If $t \in(c, 1]$, we need that $(1-\delta) u_{t}(t)+\delta U_{t}^{A} \geq u_{t}(w)$, i.e., $u_{t}(w) \leq \delta U_{t}^{A}$.
Hence, at $t=c$ we must have equality: $u_{c}(w)=\delta U_{c}^{A}$.
We have our second equilibrium condition: $\delta U_{c}^{A}=-(c-w)$.
It can be proved (see the paper) that these two equations indeed have a solution and that it is unique.

Back to the model without parties

If there are no parties, we have

$$
\begin{aligned}
U_{\bar{x}}= & \frac{1}{1-\beta}\left\{\operatorname{Pr}(t \in W) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in W\right]+\right. \\
& +\operatorname{Pr}(t \in C) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in\{-w, w\}\right]+ \\
& \left.+\operatorname{Pr}(t \in E)(1-\delta) \mathbb{E}\left[u_{\bar{x}}(t) \mid t \in E\right]\right\} .
\end{aligned}
$$

where $\beta=\operatorname{Pr}(t \in E) \delta$.
We can do the same analysis, and we arrive at the same two conditions for an equilibrium:

$$
\begin{aligned}
& U_{0}=-w \\
& \delta U_{c}=-(c-w) .
\end{aligned}
$$

Next steps

We won't prove these, but the next steps in the paper are:

- We note that $U_{0}(w, c)=U_{0}^{A}(w, c)$, so $U_{0}(w, c)=-w$ holds with and without parties. Using that we get that if w increases, c decreases.
- We note that $U_{\bar{x}}^{A}(w, c)>U_{\bar{x}}(w, c)>U_{\bar{x}}^{B}(w, c)$ for negative \bar{x}.
- We prove that if w, c is the equilibrium without parties and \tilde{w}, \tilde{c} is the equilibrium with parties, then $0<\tilde{w}<w<c<\tilde{c}<1$.
- We verify that every voter is (ex ante) better off with parties than without.

