Section 7

Repeated elections with two parties

Juan Dodyk

Gov 2006 - Harvard

March 11, 2020

Plan

We are going to discuss the following paper:

Bernhardt, Dan, Larissa Campuzano, Francesco Squintani, and Odilon Câmara. 2009.
 "On the Benefits of Party Competition." *Games and Economic Behavior* 66(2): 685–707.

It is the same model as Duggan (2000), only adding two parties, A and B.

- A is the party of left-of-center candidates, i.e., $A = \{x : x < 0\};$
- B is the party of right-wing candidates, i.e., $B = \{x : x > 0\}$.
- In each election, if the incumbent is of party A (say), then the challenger is a randomly selected member of party B (instead of from the whole population as in Duggan).

The main result:

- *Every* voter is better off having parties!

THE MODEL

- At each time k an incumbent chooses a policy $x_k \in I = [-1, 1]$.
- Citizens have types symetrically distributed with density f over I.
- Per-period utility from policy x for type t is $u_t(x) = -|x t|$.
- There are two parties: A = [-1, 0) and B = [0, 1].
 - They alternate in power unless the incumbent is reelected.
- In each period there is an election; if the incumbent gets $\geq \frac{1}{2}$ of the votes, she keeps office.
 - The challenger is selected at random from the opposition party.
- Every citizen's discount factor is $\delta \in (0, 1)$.

Equilibrium

We look for a stationary PBE with the following characteristics:

- I is partitioned into $W = [-w, w], C = [-c, c] \smallsetminus W, E = I \smallsetminus C$, with 0 < w < c < 1.
- Each candidate of type t chooses policy $x = p_t$, where

$$p_t = \begin{cases} t, \text{ if } t \in W \cup E, \\ -w, \text{ if } t \in [-c, -w), \text{ and} \\ w, \text{ if } t \in (w, c] \end{cases}$$

if she is in office.

- If the voters see an off-equilibrium policy x, i.e., $x \in C$, then they assume that t = x.
- The incumbent wins iff $x \in W$.

Let's check that these strategies are part of a PBE for some w, c.

THE VOTERS' DECISION

Take the strategies of candidates as given.

Let x be the type of the incumbent, and let \bar{x} be the type of a voter.

Let's assume that x < 0, i.e., $x \in A$.

The utility from retaining x is $u_{\bar{x}}(p_x)$.

The utility from choosing a random challenger from ${\cal B}$ is

$$U_{\bar{x}}^{B} = \Pr(t \notin E \mid t \in B) \mathbb{E}[u_{\bar{x}}(p_{t}) \mid t \in B \setminus E] + \Pr(t \in E \mid t \in B) \left\{ (1 - \delta) \mathbb{E}[u_{\bar{x}}(p_{t}) \mid t \in B \cap E] + \delta U_{\bar{x}}^{A} \right\},$$

where

$$\begin{aligned} U_{\bar{x}}^A &= \Pr(t \notin E \mid t \in A) \mathbb{E}[u_{\bar{x}}(p_t) \mid t \in A \smallsetminus E] + \\ &+ \Pr(t \in E \mid t \in A) \left\{ (1 - \delta) \mathbb{E}[u_{\bar{x}}(p_t) \mid t \in A \cap E] + \delta U_{\bar{x}}^B \right\}. \end{aligned}$$

So, \bar{x} votes to retain $x \in A$ iff $u_{\bar{x}}(x) \ge U_{\bar{x}}^B$.

Similarly, \bar{x} votes to retain $x \in B$ iff $u_{\bar{x}}(x) \ge U_{\bar{x}}^A$.

We can do the same that we did in lecture: prove that the median voter decides by first bounding

$$\frac{\partial U_{\bar{x}}^A}{\partial \bar{x}}$$
 and $\frac{\partial U_{\bar{x}}^B}{\partial \bar{x}}$

where $U_{\bar{x}}^A, U_{\bar{x}}^B$ are differentiable. (They are for all but finitely many points.)

We have

$$\begin{split} U_{\bar{x}}^{B} &= \Pr(t \notin E \mid t \in B) \mathbb{E}[u_{\bar{x}}(p_{t}) \mid t \in B \smallsetminus E] + \\ &+ \Pr(t \in E \mid t \in B) \left\{ (1 - \delta) \mathbb{E}[u_{\bar{x}}(p_{t}) \mid t \in B \cap E] + \delta U_{\bar{x}}^{A} \right\} = \\ &= \Pr(t \in W \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) \mid t \in W \cap B] + \\ &+ \Pr(t \in C \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in E \mid t \in B)(1 - \delta) \mathbb{E}[u_{\bar{x}}(t) \mid t \in E \cap B] + \\ &+ \beta U_{\bar{x}}^{A} = \\ &= \Pr(t \in W \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in C \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in E \mid t \in B)(1 - \delta) \mathbb{E}[u_{\bar{x}}(t) \mid t \in E \cap B] + \\ &+ \beta \Pr(t \in W \mid t \in A) \mathbb{E}[u_{\bar{x}}(t) \mid t \in W \cap A] + \\ &+ \beta \Pr(t \in C \mid t \in A) \mathbb{E}[u_{\bar{x}}(t) \mid t \in \{-w, w\} \cap A] + \\ &+ \beta \Pr(t \in E \mid t \in A)(1 - \delta) \mathbb{E}[u_{\bar{x}}(t) \mid t \in E \cap A] + \\ &+ \beta^{2} U_{\bar{x}}^{B}, \end{split}$$

where $\beta = \Pr(t \in E \mid t \in B)\delta = \Pr(t \in E \mid t \in A)\delta$.

$$\begin{split} U^B_{\bar{x}} &= \Pr(t \in W \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) \mid t \in W \cap B] + \\ &+ \Pr(t \in C \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in E \mid t \in B)(1 - \delta) \mathbb{E}[u_{\bar{x}}(t) \mid t \in E \cap B] + \\ &+ \Pr(t \in W \mid t \in B) \mathbb{E}[\beta u_{\bar{x}}(-t) \mid t \in W \cap B] + \\ &+ \Pr(t \in C \mid t \in B) \mathbb{E}[\beta u_{\bar{x}}(-t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in E \mid t \in B)(1 - \delta) \mathbb{E}[\beta u_{\bar{x}}(-t) \mid t \in E \cap B] + \\ &+ \beta^2 U^B_{\bar{x}} = \\ &= \Pr(t \in W \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in C \mid t \in B) \mathbb{E}[u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t) \mid t \in \{-w, w\} \cap B] + \\ &+ \Pr(t \in E \mid t \in B)(1 - \delta) \mathbb{E}[u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t) \mid t \in E \cap B] + \\ &+ \beta^2 U^B_{\bar{x}}. \end{split}$$

After solving for $U^B_{\bar{x}}$ we can re-write this as

$$U_{\bar{x}}^B = \sum_{i=1}^3 \omega_i \mathbb{E}\left[\frac{u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t)}{1+\beta} \mid t \in S_i\right]$$

for some $\omega_1, \omega_2, \omega_3 \in [0, 1]$ s.t. $\sum_{i=1}^3 \omega_i = 1$, and $S_i \subset B$. Now, for t > 0,

$$\frac{\partial}{\partial \bar{x}} \frac{u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t)}{1+\beta} = \begin{cases} 1, & \text{if } \bar{x} < -t, \\ \frac{1-\beta}{1+\beta} \in (0,1), & \text{if } \bar{x} \in (-t,t), \\ -1, & \text{if } \bar{x} > t. \end{cases}$$

So, if
$$\bar{x} \leq 0$$
, we have $0 \leq \frac{\partial}{\partial \bar{x}} \frac{u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t)}{1+\beta} \leq 1$, and if $\bar{x} > 0$, we have $-1 \leq \frac{\partial}{\partial \bar{x}} \frac{u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t)}{1+\beta} \leq 1$.

Applying Leibniz Rule, we get that if $\bar{x} \leq 0$ then $0 \leq \frac{\partial U_{\bar{x}}^B}{\partial \bar{x}} \leq 1$, and if $\bar{x} > 0$ then $-1 \leq \frac{\partial U_{\bar{x}}^B}{\partial \bar{x}} \leq 1$.

We can do the same thing for $U_{\bar{x}}^A$:

$$U_{\bar{x}}^{A} = \frac{1}{1-\beta^{2}} \Big\{ \Pr(t \in W \mid t \in A) \mathbb{E}[u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t) \mid t \in W \cap A] + \\ + \Pr(t \in C \mid t \in A) \mathbb{E}[u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t) \mid t \in \{-w, w\} \cap A] + \\ + \Pr(t \in E \mid t \in A)(1-\delta) \mathbb{E}[u_{\bar{x}}(t) + \beta u_{\bar{x}}(-t) \mid t \in E \cap A] \Big\}.$$

where $\beta = \Pr(t \in E \mid t \in A)\delta$.

We get that if $\bar{x} < 0$ then $-1 \le \frac{\partial U_{\bar{x}}^A}{\partial \bar{x}} \le 1$, and if $\bar{x} \ge 0$ then $-1 \le \frac{\partial U_{\bar{x}}^A}{\partial \bar{x}} \le 0$.

Also, note that $u_{\bar{x}}(t)$ is concave in \bar{x} for any t (positive or negative), so $U_{\bar{x}}^A$ and $U_{\bar{x}}^B$ are concave.

The median voter is decisive

Suppose that t < 0 and $u_0(t) - U_0^B > 0$, i.e., the median type votes to reelect the incumbent. We will show that every $\bar{x} < 0$ does as well.

For $t \leq \bar{x} < 0$, we have $u_{\bar{x}}(t) \geq u_0(t)$ and $U^B_{\bar{x}} \leq U^B_0$ (since we proved that $\frac{\partial U^B_{\bar{x}}}{\partial \bar{x}} \geq 0$ for $\bar{x} < 0$), so $u_{\bar{x}}(t) - U^B_{\bar{x}} \geq u_0(t) - U^B_0 > 0$, as desired.

For $\bar{x} < t$, note that $u_{\bar{x}}(t) = -(t - \bar{x})$ is linear in \bar{x} , so $u_{\bar{x}}(t) - U_{\bar{x}}^B$ is convex, hence to prove that $u_{\bar{x}}(t) - U_{\bar{x}}^B > 0$ for all $\bar{x} \in [-1, t]$ it's enough to prove it for both endpoints.

We already did $\bar{x} = t$, so we just need to check that $u_{-1}(t) - U_{-1}^B > 0$. Now, looking back at the formula for $U_{\bar{x}}^B$ and plugging $\bar{x} = -1$ we can see that $U_{-1}^B < -1$, but $u_{-1}(t) = -(t+1) \ge -1$, so $u_{-1}(t) - U_{-1}^B > 0$, as desired. Suppose that t < 0 and $u_0(t) - U_0^B < 0$, i.e., the median type votes for the opposition. We will show that every $\bar{x} > 0$ does as well.

We have

$$U_{\bar{x}}^B - U_0^B = \int_0^{\bar{x}} \frac{\partial U_x^B}{\partial x} dx \ge \int_0^{\bar{x}} (-1) dx = -\bar{x},$$

and $u_{\bar{x}}(t) - u_0(t) = -\bar{x}$, so

$$u_{\bar{x}}(t) - U^B_{\bar{x}} \ge u_0(t) - \bar{x} - (U^B_0 - \bar{x}) > 0,$$

as desired.

Proving that the median type is decisive for t > 0 is similar.

THE MEDIAN VOTER'S DECISION

An incumbent choosing policy t < 0 is reelected iff $u_0(p_t) \ge U_0^B$, and t > 0 iff $u_0(p_t) \ge U_0^A$. We have

$$\begin{split} U_0^A &= \frac{1}{1 - \beta^2} \Big\{ \Pr(t \in W \mid t \in A) \mathbb{E}[u_0(t) + \beta u_0(-t) \mid t \in W \cap A] + \\ &+ \Pr(t \in C \mid t \in A) \mathbb{E}[u_0(t) + \beta u_0(-t) \mid t \in \{-w, w\} \cap A] + \\ &+ \Pr(t \in E \mid t \in A)(1 - \delta) \mathbb{E}[u_0(t) + \beta u_0(-t) \mid t \in E \cap A] \Big\} \\ &= \frac{-1}{1 - \beta} \Big\{ \Pr(t \in W \mid t \in A) \mathbb{E}[t \mid t \in [0, w]] + \\ &+ \Pr(t \in C \mid t \in A) w + \Pr(t \in E \mid t \in A)(1 - \delta) \mathbb{E}[t \mid t \in (c, 1]] \Big\}, \end{split}$$
and $U_0^B = U_0^A$.

Hence, t is reelected iff $-|p_t| \ge U_0^A$.

This implies that $U_0^A = -w$, because if $U_0^A < -w$ then t > w would choose $p_t = t$ instead of $p_t = w$, and if $U_0^A > -w$ then t = w would not win when choosing $p_t = w$.

We have our first equilibrium condition: $U_0^A = -w$.

THE INCUMBENT'S DECISION

If $t \in W = [-w, w]$, she can choose x = t and win, so she will. If $t \in (w, c]$, we need that $u_t(w) \ge (1 - \delta)u_t(t) + \delta U_t^A$, i.e., $u_t(w) \ge \delta U_t^A$. If $t \in (c, 1]$, we need that $(1 - \delta)u_t(t) + \delta U_t^A \ge u_t(w)$, i.e., $u_t(w) \le \delta U_t^A$. Hence, at t = c we must have equality: $u_c(w) = \delta U_c^A$.

We have our second equilibrium condition: $\delta U_c^A = -(c-w)$.

It can be proved (see the paper) that these two equations indeed have a solution and that it is unique.

BACK TO THE MODEL WITHOUT PARTIES

If there are no parties, we have

$$U_{\bar{x}} = \frac{1}{1-\beta} \Big\{ \Pr(t \in W) \mathbb{E}[u_{\bar{x}}(t) \mid t \in W] + \\ + \Pr(t \in C) \mathbb{E}[u_{\bar{x}}(t) \mid t \in \{-w, w\}] + \\ + \Pr(t \in E)(1-\delta) \mathbb{E}[u_{\bar{x}}(t) \mid t \in E] \Big\}.$$

where $\beta = \Pr(t \in E)\delta$.

We can do the same analysis, and we arrive at the same two conditions for an equilibrium:

 $U_0 = -w$ $\delta U_c = -(c - w).$

NEXT STEPS

We won't prove these, but the next steps in the paper are:

- We note that $U_0(w,c) = U_0^A(w,c)$, so $U_0(w,c) = -w$ holds with and without parties. Using that we get that if w increases, c decreases.
- We note that $U^A_{\bar{x}}(w,c) > U_{\bar{x}}(w,c) > U^B_{\bar{x}}(w,c)$ for negative \bar{x} .
- We prove that if w, c is the equilibrium without parties and \tilde{w}, \tilde{c} is the equilibrium with parties, then $0 < \tilde{w} < w < c < \tilde{c} < 1$.
- We verify that every voter is (ex ante) better off with parties than without.