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Plan
We will derive the results from the model that we saw in lecture. These are:

– Adding a bit of valence advantage pushes the advantaged party to the center, and
pushes the disadvantaged party to the extreme.

– If valence is sufficiently high, this force reverses for the advantaged party — it starts
moving towards its ideal point as its advantage increases.

It’s enough if we just do the first one. This is a complicated model to analyze!

If we have time, we can see how adding a common taste shock to voters’ preferences lets us
get a simple expression for the probability of winning of a party.



Groseclose (2001)
We will maintain the notation we were using in lecture, but we follow the paper.

Reminder.

– We have two candidates, A and B, with ideal points −1 and 1 respectively.
– They choose policy platforms xA and xB .

– Policy preferences are given by u(x, t) = −l(|x− t|), where
– x is the policy implemented,
– t is the individual’s ideal point, and
– l is a loss function such that l′(0) = 0, l′ > 0, l′′ ≥ 0.

– This implies that u(·, t) is concave and single-peaked at t.
– Canonical case: l(x) = x2, which implies u(x, t) = −(x − t)2.



– The median voter’s ideal point, tM , is unknown at the time of choosing policy
platforms.
– We have tM ∼ G, i.e., Pr(tM ≤ x) = G(x), where

– G is a CDF whose support includes [−1, 1],
– is symmetric around 0, and
– g = G′ is its density.

– A voter of type t votes for A if u(xA, t) + v > u(xB, t), where
– v ≥ 0 is A’s valence advantage.

– Candidate’s payoffs:
– If candidate i ∈ {A,B} wins, her payoff is b+ u(xi, ti), where

– b > 0 is the rent from holding office, and
– ti is her ideal point.

– If she loses, she gets u(x−i, ti), where
– x−i is the policy platform of the other candidate.



Who wins?
A wins if u(xA, t) + v > u(xB, t) for more than half of the voters.

– If u(xA, t
M ) + v > u(xB, t

M ), it also happens for any t ≤ tM + ε assuming xA ≤ xB,
so A wins.

– Similarly, if u(xA, t
M ) + v < u(xB, t

M ), then it happens for any t ≥ tM − ε, so B wins.

– If u(xA, t
M ) + v = u(xB, t

M ) then there is a tie, so each candidate wins with
probability 1

2 .
– Note that if xA 6= xB this happens with probability zero, so we can ignore it, and if v > 0

this can’t happen for xA = xB .
– The only case that we may need to consider is xA = xB and v = 0.

– We know from last week that if v = 0 and bg(0) < l′(1) then in equilibrium we have
xA < xB , so let’s assume bg(0) < l′(1) and not worry about this.

In sum, A wins if and only if u(xA, t
M ) + v > u(xB, t

M ), i.e., the median voter decides.



A wins if and only if u(xA, t
M ) + v > u(xB, t

M ).

Let’s assume that xA ≤ xB. You can check that this must be the case in equilibrium, but
let’s just assume it.

Let t∗ be such that u(xA, t
∗) + v = u(xB, t

∗).
Then A wins iff tM < t∗, so Pr(A wins) = G(t∗).

Example. Let l(x) = x2, so u(x, t∗) = −(x− t∗)2.

u(xA, t
∗) + v = u(xB, t

∗)
−(xA − t∗)2 + v = −(xB − t∗)2

v = (xA − t∗)2 − (xB − t∗)2

v = (xA − xB)(xA + xB − 2t∗)

v = 1
2(xB − xA)

(
t∗ − xA + xB

2

)
v

2(xB − xA) = t∗ − xA + xB

2

t∗ = xA + xB

2 + v

2(xB − xA) .



A wins if and only if u(xA, t
M ) + v > u(xB, t

M ).

Let’s assume that xA ≤ xB. You can check that this must be the case in equilibrium, but
let’s just assume it.

Let t∗ be such that u(xA, t
∗) + v = u(xB, t

∗).
Then A wins iff tM < t∗, so Pr(A wins) = G(t∗).

Example. Let l(x) = x2, so u(x, t∗) = −(x− t∗)2.
u(xA, t

∗) + v = u(xB, t
∗)

−(xA − t∗)2 + v = −(xB − t∗)2

v = (xA − t∗)2 − (xB − t∗)2

v = (xA − xB)(xA + xB − 2t∗)

v = 1
2(xB − xA)

(
t∗ − xA + xB

2

)
v

2(xB − xA) = t∗ − xA + xB

2

t∗ = xA + xB

2 + v

2(xB − xA) .



Can xA = xB be an equilibrium if v > 0?
Note that B loses for sure, so her payoff is u(xA, 1).

– If she deviates, maybe with some probability the median voter will prefer her (despite
A’s valence advantage), so she can never lose.

– If v is small or tM can be very large with positive probability, this will happen for any
xB > xA.

– We can also just assume that if B is indifferent she will choose the platform closest to
her ideal point.

So, if xA, xB is a pure-strategy equilibrium then xA < xB.



A’s problem
A’s expected utility is

UA(xA, xB) = Pr(A wins)(b+ u(xA,−1)) + Pr(A loses)u(xB,−1) =
= G(t∗)(b+ uA(xA)) + (1−G(t∗))uA(xB) =
= G(t∗)(b+ uA(xA)− uA(xB)) + uA(xB).

Taking xB as given, we have

∂

∂xA
UA(xA, xB) = g(t∗) ∂t

∗

∂xA
(b+ uA(xA)− uA(xB)) +G(t∗)u′A(xA).

If xA < xB is an equilibrium, the FOC ∂
∂xA

UA(xA, xB) = 0 must hold (because A can
move to the left and to the right).



B’s problem
B’s expected utility is

UB(xA, xB) = Pr(A wins)u(xA, 1) + (1− Pr(A loses))(b+ u(xB, 1)) =
= G(t∗)uB(xA) + (1−G(t∗))(b+ uB(xB)) =
= (1−G(t∗))(b+ uB(xB)− uB(xA)) + uB(xA).

Taking xA as given, we have

∂

∂xB
UB(xA, xB) = −g(t∗) ∂t

∗

∂xB
(b+ uB(xB)− uB(xA)) + (1−G(t∗))u′B(xB).

The FOC ∂
∂xB

UB(xA, xB) = 0 must hold.



Equilibrium
If the strategies (xA, xB) form an equilibrium then we must have

g(t∗) ∂t
∗

∂xA
(b+ uA(xA)− uA(xB)) = −G(t∗)u′A(xA), (1)

g(t∗) ∂t
∗

∂xB
(b+ uB(xB)− uB(xA)) = (1−G(t∗))u′B(xB). (2)

Now,

– Equation (1) defines implicitly A’s best response x̃A(xB, v).
– Equation (2) defines implicitly B’s best response x̃B(xA, v).
– In equilibrium, we must have

x∗A = x̃A(x∗B, v) = x̃A(x̃B(x∗A, v), v).

We will use this formula to derive comparative statics ∂x∗A
∂v , i.e., what happens with A’s

position as v increases.



Differentiating both sides of x∗A = x̃A(x̃B(x∗A, v), v) we get

∂x∗A
∂v

= ∂x̃A

∂xB

(
∂x̃B

∂xA

∂x∗A
∂v

+ ∂x̃B

∂v

)
+ ∂x̃A

∂v
.

Solving for ∂x∗A
∂v , we obtain(

1− ∂x̃A

∂xB

∂x̃B

∂xA

)
∂x∗A
∂v

= ∂x̃A

∂xB

∂x̃B

∂v
+ ∂x̃A

∂v
.

We want to prove that ∂
∂vx
∗
A(x∗B, 0) > 0, i.e., that A moderates (moves to the center) when

she gets a small valence advantage.

We will have to calculate x∗A, x∗B for v = 0, and then the four partial derivatives ∂x̃A
∂xB

, ∂x̃B
∂xA

,
∂x̃A
∂v and ∂x̃B

∂v evaluated at xA = x∗A, xB = x∗B, v = 0.



The equilibrium for v = 0
First, we need to calculate the equilibrium for v = 0, which is the model we analyzed last
week.

We will assume that l(x) = x2, so u(x, t) = −(x− t)2.

The equilibrium necessary condition is

g(t∗) ∂t
∗

∂xA
(b+ uA(xA)− uA(xB)) = −G(t∗)u′A(xA),

g(t∗) ∂t
∗

∂xB
(b+ uB(xB)− uB(xA)) = (1−G(t∗))u′B(xB).

We will assume that the equilibrium is symmetric around 0. With G uniform it’s easy to
prove that this must be the case.



Let z = x∗A be the equilibrium platform for v = 0, so X∗B = −z.

We have t∗ = 0 and thus G(t∗) = 1
2 , so the first FOC becomes

g(t∗) ∂t
∗

∂xA
(b+ uA(xA)− uA(xB)) = −G(t∗)u′A(xA)

g(0)1
2(b+ uA(z)− uA(−z)) = −1

2u
′
A(z)

g(0)1
2(b− (z + 1)2 + (−z + 1)2) = 1

22(z + 1)

g(0)(b− 4z) = 2(z + 1)
(−4g(0)− 2)z = 2− g(0)b

z = − 2− g(0)b
2(1 + 2g(0)) .

Note that we were assuming g(0)b < l′(1) = 2, so z < 0.



The partial derivatives
Now we proceed to calculate the derivatives ∂x̃A

∂xB
, ∂x̃B

∂xA
, ∂x̃A

∂v and ∂x̃B
∂v evaluated at xA = z,

xB = −z, v = 0.

Recall that x̃A(xB, v), x̃B(xA, v) and t∗(xA, xB) were given by

g(t∗) ∂t
∗

∂xA
(b+ uA(x̃A)− uA(xB)) = −G(t∗)u′A(x̃A),

g(t∗) ∂t
∗

∂xB
(b+ uB(x̃B)− uB(xA)) = (1−G(t∗))u′B(x̃B),

t∗ = xA + xB

2 + v

2(xB − xA) .



Calculating ∂x̃A
∂xB

We differentiate both sides of the equation

g(t∗) ∂t
∗

∂xA
(b+ uA(x̃A)− uA(xB)) = −G(t∗)u′A(x̃A)

with respect to xB and get (ignoring terms that will disappear when setting v = 0)

g(t∗) ∂t
∗

∂xA

(
u′A(x̃A)∂x̃A

∂xB
− u′A(xB)

)
= −g(t∗)1

2

(
∂x̃A

∂xB
+ 1

)
u′A(x̃A)−G(t∗)u′′A(x̃A)∂x̃A

∂xB
.

We set x̃A = z, xB = −z, v = 0, thus t∗ = 0, and get

g(0)1
2

(
u′A(z)∂x̃A

∂xB
− u′A(−z)

)
= −g(0)1

2

(
∂x̃A

∂xB
+ 1

)
u′A(z) + ∂x̃A

∂xB
.



Rearranging, we get(
g(0)1

2u
′
A(z) + g(0)1

2u
′
A(z)− 1

)
∂x̃A

∂xB
= g(0)1

2u
′
A(−z)− g(0)1

2u
′
A(z),

so simplifying we arrive at

∂x̃A

∂xB
= − 2g(0)z

1 + 2g(0)(z + 1) .



Calculating ∂x̃B
∂xA

We differentiate both sides of the equation

g(t∗) ∂t
∗

∂xB
(b+ uB(x̃B)− uB(xA)) = (1−G(t∗))u′B(x̃B)

with respect to xA and get (ignoring terms that will disappear when setting v = 0)

g(t∗) ∂t
∗

∂xB

(
u′B(x̃B)∂x̃B

∂xA
− u′B(xA)

)
= −g(t∗)1

2

(
∂x̃B

∂xA
+ 1

)
u′B(x̃B)+(1−G(t∗))u′′B(x̃B)∂x̃B

∂xA
.

We set x̃A = z, xB = −z, v = 0, thus t∗ = 0, and get

g(0)1
2

(
u′B(−z)∂x̃B

∂xA
− u′B(z)

)
= −g(0)1

2

(
∂x̃B

∂xA
+ 1

)
u′B(−z)− ∂x̃B

∂xA
.



Rearranging, we get(
g(0)1

2u
′
B(−z) + g(0)1

2u
′
B(−z) + 1

)
∂x̃B

∂xA
= g(0)1

2u
′
B(z)− g(0)1

2u
′
B(−z),

so simplifying we arrive at

∂x̃B

∂xA
= − 2g(0)z

1 + 2g(0)(z + 1) .

The surprising result is that

∂x̃A

∂xB
(−z, 0) = ∂x̃B

∂xA
(z, 0).



Calculating ∂x̃A
∂v

We differentiate both sides of the equation

g(t∗) ∂t
∗

∂xA
(b+ uA(x̃A)− uA(xB)) = −G(t∗)u′A(x̃A) (∗)

with respect to v and get (ignoring terms that will disappear when setting v = 0)

g(t∗) 1
2(xB − x̃A)2 (b+ uA(x̃A)− uA(xB)) + g(t∗) ∂t

∗

∂xA
u′A(x̃A)∂x̃A

∂v
=

− g(t∗)
( 1

2(xB − x̃A) + 1
2
∂x̃A

∂v

)
u′A(x̃A)−G(t∗)u′′A(x̃A)∂x̃A

∂v
.

We set x̃A = z, xB = −z, v = 0, thus t∗ = 0, and get

g(0) 1
8z2 (b+ uA(z)− uA(−z)) + g(0)1

2u
′
A(z)∂x̃A

∂v
= −g(0)

( 1
4z + 1

2
∂x̃A

∂v

)
u′A(z) + 1

22∂x̃A

∂v
.



Replacing g(0)(b+ uA(z)− uA(−z)) = −u′A(z) from (∗) and rearranging, we get

(
g(0)u′A(z)− 1

) ∂x̃A

∂v
= 1

4z

( 1
2z − g(0)

)
u′A(z),

so simplifying we arrive at

∂x̃A

∂v
= (1 + z)(1− 2g(0)z)

4z2(1 + 2g(0)(z + 1)) .



Calculating ∂x̃B
∂v

We differentiate both sides of the equation

g(t∗) ∂t
∗

∂xB
(b+ uB(x̃B)− uB(xA)) = (1−G(t∗))u′B(x̃B) (∗)

with respect to v and get (ignoring terms that will disappear when setting v = 0)

− g(t∗) 1
2(xB − x̃A)2 (b+ uB(x̃B)− uB(xA)) + g(t∗) ∂t

∗

∂xB
u′B(x̃B)∂x̃B

∂v
=

− g(t∗)
( 1

2(xB − x̃A) + 1
2
∂x̃B

∂v

)
u′B(x̃B) + (1−G(t∗))u′′B(x̃B)∂x̃B

∂v
.

We set x̃A = z, xB = −z, v = 0, thus t∗ = 0, and get

−g(0) 1
8z2 (b+uB(−z)−uB(z))+g(0)1

2u
′
B(z)∂x̃B

∂v
= −g(0)

( 1
4z + 1

2
∂x̃B

∂v

)
u′B(−z)+1

2(−2)∂x̃B

∂v
.



Replacing g(0)(b+ uA(z)− uA(−z)) = u′B(−z) from (∗) and rearranging, we get

(
g(0)u′B(−z) + 1

) ∂x̃B

∂v
= 1

8z2 (1− 2g(0)z)u′B(−z),

so simplifying we arrive at

∂x̃B

∂v
= (1 + z)(1− 2g(0)z)

4z2(1 + 2g(0)(z + 1)) .

Again, surprisingly we get
∂x̃A

∂v
(−z, 0) = ∂x̃B

∂v
(z, 0).



Finally, ∂x∗A
∂v

We had this expression:(
1− ∂x̃A

∂xB

∂x̃B

∂xA

)
∂x∗A
∂v

= ∂x̃A

∂xB

∂x̃B

∂v
+ ∂x̃A

∂v
.

Using ∂x̃A
∂xB

= ∂x̃B
∂xA

and ∂x̃A
∂v = ∂x̃B

∂v , this simplifies to(
1−

(
∂x̃A

∂xB

)2) ∂x∗A
∂v

=
(

1 + ∂x̃A

∂xB

)
∂x̃A

∂v(
1− ∂x̃A

∂xB

)
∂x∗A
∂v

= ∂x̃A

∂v
.

Using z = − 2−g(0)b
2(1+2g(0)) we can verify that ∂x̃A

∂xB
< 1, and clearly ∂x̃A

∂v > 0, so we get

∂x∗A
∂v

> 0,

as we wanted to prove.



What about ∂x∗B
∂v ?

We can use the same strategy: x∗B = x̃B(x∗A, v) = x̃B(x̃A(x∗B, v), v), so

∂x∗B
∂v

= ∂x̃B

∂xA

(
∂x̃A

∂xB

∂x∗B
∂v

+ ∂x̃A

∂v

)
+ ∂x̃B

∂v
,

and (
1− ∂x̃B

∂xA

∂x̃A

∂xB

)
∂x∗B
∂v

= ∂x̃B

∂xA

∂x̃A

∂v
+ ∂x̃B

∂v
.

We already calculated these partial derivatives. Same reasoning:(
1−

(
∂x̃A

∂xB

)2) ∂x∗B
∂v

=
(

1 + ∂x̃A

∂xB

)
∂x̃A

∂v
,(

1− ∂x̃A

∂xB

)
∂x∗B
∂v

= ∂x̃A

∂v
,

and we get
∂x∗B
∂v

= ∂x∗A
∂v

> 0.



Conclusion
When we give A a bit of valence advantage, i.e., we move from v = 0 to v = ε > 0, both
candidates move to the right.

– In the case of A, this means that she moderates, i.e., moves towards the center.
– In the case of B, she moves towards her ideal point, i.e., she becomes more extreme.

Next question. What happens when we give A a lot of valence advantage?

Answer. A moves to her ideal point, and B moves to the right of her ideal point (!).



When v is large
Recall that

t∗ = xA + xB

2 + v

2(xB − xA) .

We have

∂t∗

∂xA
= 1

2 + v

2(xB − xA)2 ,

∂t∗

∂xB
= 1

2 −
v

2(xB − xA)2 .

It’s always the case that ∂t∗

∂xA
> 0. Hence xA ≥ −1 in equilibrium, because xA = −1 is

better than any xA < −1.



B becomes an extremist
Let’s assume that v > 4.

Suppose that xB ≤ 1 in equilibrium. Then 0 ≤ xB − xA ≤ 2, hence (xB − xA)2 ≤ 4 and

∂t∗

∂xB
= 1

2 −
v

2(xB − xA)2 < 0.

In that case, looking at

∂UB

∂xB
= −g(t∗) ∂t

∗

∂xB
(b+ uB(xB)− uB(xA)) + (1−G(t∗))u′B(xB)

we see that ∂UB
∂xB

> 0 for any xB ≤ 1. Hence xB ≤ 1 cannot happen in equilibrium.

Conclusion. x∗B > 1. In words, if v > 4, i.e., A’s valence advantage is large, B adopts a
policy more extreme than her ideal point!



A chooses her preferred policy
Assume that tM ∼ U [−v̄, v̄].

Assume that v > (v̄ + 1)2.

We have −(v̄ + 1)2 + v > 0 ≥ −(v̄ − xB)2 for any xB.

Hence if tM = v̄, then by choosing xA = −1 A wins the election. Moreover, for any tM ≤ v̄,
this is also the case. Now, we are assuming tM ∼ U [−v̄, v̄], hence A always wins the
election with xA = −1. This is also her ideal policy, hence she will choose it in equilibrium.

Conclusion. If v is large, assuming tM uniform, in equilibrium A chooses her preferred
policy.

We are done!


