SECtion 6

Electoral Competition with Valence Advantage

Juan Dodyk

Gov 2006 - Harvard
March 4, 2020

Plan

We will derive the results from the model that we saw in lecture. These are:

- Adding a bit of valence advantage pushes the advantaged party to the center, and pushes the disadvantaged party to the extreme.
- If valence is sufficiently high, this force reverses for the advantaged party - it starts moving towards its ideal point as its advantage increases.

It's enough if we just do the first one. This is a complicated model to analyze!
If we have time, we can see how adding a common taste shock to voters' preferences lets us get a simple expression for the probability of winning of a party.

Groseclose (2001)

We will maintain the notation we were using in lecture, but we follow the paper.

Reminder.

- We have two candidates, A and B, with ideal points -1 and 1 respectively.
- They choose policy platforms x_{A} and x_{B}.
- Policy preferences are given by $u(x, t)=-l(|x-t|)$, where
$-x$ is the policy implemented,
- t is the individual's ideal point, and
$-l$ is a loss function such that $l^{\prime}(0)=0, l^{\prime}>0, l^{\prime \prime} \geq 0$.
- This implies that $u(\cdot, t)$ is concave and single-peaked at t.
- Canonical case: $l(x)=x^{2}$, which implies $u(x, t)=-(x-t)^{2}$.
- The median voter's ideal point, t^{M}, is unknown at the time of choosing policy platforms.
- We have $t^{M} \sim G$, i.e., $\operatorname{Pr}\left(t^{M} \leq x\right)=G(x)$, where
- G is a CDF whose support includes $[-1,1]$,
- is symmetric around 0 , and
$-g=G^{\prime}$ is its density.
- A voter of type t votes for A if $u\left(x_{A}, t\right)+v>u\left(x_{B}, t\right)$, where
$-v \geq 0$ is A 's valence advantage.
- Candidate's payoffs:
- If candidate $i \in\{A, B\}$ wins, her payoff is $b+u\left(x_{i}, t_{i}\right)$, where
$-b>0$ is the rent from holding office, and
- t_{i} is her ideal point.
- If she loses, she gets $u\left(x_{-i}, t_{i}\right)$, where
$-x_{-i}$ is the policy platform of the other candidate.

Who WINS?

A wins if $u\left(x_{A}, t\right)+v>u\left(x_{B}, t\right)$ for more than half of the voters.

- If $u\left(x_{A}, t^{M}\right)+v>u\left(x_{B}, t^{M}\right)$, it also happens for any $t \leq t^{M}+\epsilon$ assuming $x_{A} \leq x_{B}$, so A wins.
- Similarly, if $u\left(x_{A}, t^{M}\right)+v<u\left(x_{B}, t^{M}\right)$, then it happens for any $t \geq t^{M}-\epsilon$, so B wins.
- If $u\left(x_{A}, t^{M}\right)+v=u\left(x_{B}, t^{M}\right)$ then there is a tie, so each candidate wins with probability $\frac{1}{2}$.
- Note that if $x_{A} \neq x_{B}$ this happens with probability zero, so we can ignore it, and if $v>0$ this can't happen for $x_{A}=x_{B}$.
- The only case that we may need to consider is $x_{A}=x_{B}$ and $v=0$.
- We know from last week that if $v=0$ and $b g(0)<l^{\prime}(1)$ then in equilibrium we have $x_{A}<x_{B}$, so let's assume $b g(0)<l^{\prime}(1)$ and not worry about this.

In sum, A wins if and only if $u\left(x_{A}, t^{M}\right)+v>u\left(x_{B}, t^{M}\right)$, i.e., the median voter decides.
A wins if and only if $u\left(x_{A}, t^{M}\right)+v>u\left(x_{B}, t^{M}\right)$.
Let's assume that $x_{A} \leq x_{B}$. You can check that this must be the case in equilibrium, but let's just assume it.

Let t^{*} be such that $u\left(x_{A}, t^{*}\right)+v=u\left(x_{B}, t^{*}\right)$.
Then A wins iff $t^{M}<t^{*}$, so $\operatorname{Pr}(A$ wins $)=G\left(t^{*}\right)$.
Example. Let $l(x)=x^{2}$, so $u\left(x, t^{*}\right)=-\left(x-t^{*}\right)^{2}$.
A wins if and only if $u\left(x_{A}, t^{M}\right)+v>u\left(x_{B}, t^{M}\right)$.
Let's assume that $x_{A} \leq x_{B}$. You can check that this must be the case in equilibrium, but let's just assume it.

Let t^{*} be such that $u\left(x_{A}, t^{*}\right)+v=u\left(x_{B}, t^{*}\right)$.
Then A wins iff $t^{M}<t^{*}$, so $\operatorname{Pr}(A$ wins $)=G\left(t^{*}\right)$.
Example. Let $l(x)=x^{2}$, so $u\left(x, t^{*}\right)=-\left(x-t^{*}\right)^{2}$.

$$
\begin{aligned}
u\left(x_{A}, t^{*}\right)+v & =u\left(x_{B}, t^{*}\right) \\
-\left(x_{A}-t^{*}\right)^{2}+v & =-\left(x_{B}-t^{*}\right)^{2} \\
v & =\left(x_{A}-t^{*}\right)^{2}-\left(x_{B}-t^{*}\right)^{2} \\
v & =\left(x_{A}-x_{B}\right)\left(x_{A}+x_{B}-2 t^{*}\right) \\
v & =\frac{1}{2}\left(x_{B}-x_{A}\right)\left(t^{*}-\frac{x_{A}+x_{B}}{2}\right) \\
\frac{v}{2\left(x_{B}-x_{A}\right)} & =t^{*}-\frac{x_{A}+x_{B}}{2} \\
t^{*} & =\frac{x_{A}+x_{B}}{2}+\frac{v}{2\left(x_{B}-x_{A}\right)} .
\end{aligned}
$$

CAN $x_{A}=x_{B}$ BE AN EQUILIBRIUM IF $v>0 ?$

Note that B loses for sure, so her payoff is $u\left(x_{A}, 1\right)$.

- If she deviates, maybe with some probability the median voter will prefer her (despite A 's valence advantage), so she can never lose.
- If v is small or t^{M} can be very large with positive probability, this will happen for any $x_{B}>x_{A}$.
- We can also just assume that if B is indifferent she will choose the platform closest to her ideal point.

So, if x_{A}, x_{B} is a pure-strategy equilibrium then $x_{A}<x_{B}$.

A's PROBLEM

A 's expected utility is

$$
\begin{aligned}
U_{A}\left(x_{A}, x_{B}\right) & =\operatorname{Pr}(A \text { wins })\left(b+u\left(x_{A},-1\right)\right)+\operatorname{Pr}(A \text { loses }) u\left(x_{B},-1\right)= \\
& =G\left(t^{*}\right)\left(b+u_{A}\left(x_{A}\right)\right)+\left(1-G\left(t^{*}\right)\right) u_{A}\left(x_{B}\right)= \\
& =G\left(t^{*}\right)\left(b+u_{A}\left(x_{A}\right)-u_{A}\left(x_{B}\right)\right)+u_{A}\left(x_{B}\right) .
\end{aligned}
$$

Taking x_{B} as given, we have

$$
\frac{\partial}{\partial x_{A}} U_{A}\left(x_{A}, x_{B}\right)=g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(x_{A}\right)-u_{A}\left(x_{B}\right)\right)+G\left(t^{*}\right) u_{A}^{\prime}\left(x_{A}\right) .
$$

If $x_{A}<x_{B}$ is an equilibrium, the FOC $\frac{\partial}{\partial x_{A}} U_{A}\left(x_{A}, x_{B}\right)=0$ must hold (because A can move to the left and to the right).

B's PROBLEM

B 's expected utility is

$$
\begin{aligned}
U_{B}\left(x_{A}, x_{B}\right) & =\operatorname{Pr}(A \text { wins }) u\left(x_{A}, 1\right)+(1-\operatorname{Pr}(A \text { loses }))\left(b+u\left(x_{B}, 1\right)\right)= \\
& =G\left(t^{*}\right) u_{B}\left(x_{A}\right)+\left(1-G\left(t^{*}\right)\right)\left(b+u_{B}\left(x_{B}\right)\right)= \\
& =\left(1-G\left(t^{*}\right)\right)\left(b+u_{B}\left(x_{B}\right)-u_{B}\left(x_{A}\right)\right)+u_{B}\left(x_{A}\right) .
\end{aligned}
$$

Taking x_{A} as given, we have

$$
\frac{\partial}{\partial x_{B}} U_{B}\left(x_{A}, x_{B}\right)=-g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(x_{B}\right)-u_{B}\left(x_{A}\right)\right)+\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(x_{B}\right) .
$$

The FOC $\frac{\partial}{\partial x_{B}} U_{B}\left(x_{A}, x_{B}\right)=0$ must hold.

Equilibrium

If the strategies $\left(x_{A}, x_{B}\right)$ form an equilibrium then we must have

$$
\begin{align*}
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(x_{A}\right)-u_{A}\left(x_{B}\right)\right)=-G\left(t^{*}\right) u_{A}^{\prime}\left(x_{A}\right), \tag{1}\\
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(x_{B}\right)-u_{B}\left(x_{A}\right)\right)=\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(x_{B}\right) . \tag{2}
\end{align*}
$$

Now,

- Equation (1) defines implicitly A 's best response $\tilde{x}_{A}\left(x_{B}, v\right)$.
- Equation (2) defines implicitly B 's best response $\tilde{x}_{B}\left(x_{A}, v\right)$.
- In equilibrium, we must have

$$
x_{A}^{*}=\tilde{x}_{A}\left(x_{B}^{*}, v\right)=\tilde{x}_{A}\left(\tilde{x}_{B}\left(x_{A}^{*}, v\right), v\right) .
$$

We will use this formula to derive comparative statics $\frac{\partial x_{A}^{*}}{\partial v}$, i.e., what happens with A 's position as v increases.

Differentiating both sides of $x_{A}^{*}=\tilde{x}_{A}\left(\tilde{x}_{B}\left(x_{A}^{*}, v\right), v\right)$ we get

$$
\frac{\partial x_{A}^{*}}{\partial v}=\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\left(\frac{\partial \tilde{x}_{B}}{\partial x_{A}} \frac{\partial x_{A}^{*}}{\partial v}+\frac{\partial \tilde{x}_{B}}{\partial v}\right)+\frac{\partial \tilde{x}_{A}}{\partial v} .
$$

Solving for $\frac{\partial x_{A}^{*}}{\partial v}$, we obtain

$$
\left(1-\frac{\partial \tilde{x}_{A}}{\partial x_{B}} \frac{\partial \tilde{x}_{B}}{\partial x_{A}}\right) \frac{\partial x_{A}^{*}}{\partial v}=\frac{\partial \tilde{x}_{A}}{\partial x_{B}} \frac{\partial \tilde{x}_{B}}{\partial v}+\frac{\partial \tilde{x}_{A}}{\partial v} .
$$

We want to prove that $\frac{\partial}{\partial v} x_{A}^{*}\left(x_{B}^{*}, 0\right)>0$, i.e., that A moderates (moves to the center) when she gets a small valence advantage.
We will have to calculate x_{A}^{*}, x_{B}^{*} for $v=0$, and then the four partial derivatives $\frac{\partial \tilde{x}_{A}}{\partial x_{B}}, \frac{\partial \tilde{x}_{B}}{\partial x_{A}}$, $\frac{\partial \tilde{x}_{A}}{\partial v}$ and $\frac{\partial \tilde{x}_{B}}{\partial v}$ evaluated at $x_{A}=x_{A}^{*}, x_{B}=x_{B}^{*}, v=0$.

The equilibrium for $v=0$

First, we need to calculate the equilibrium for $v=0$, which is the model we analyzed last week.

We will assume that $l(x)=x^{2}$, so $u(x, t)=-(x-t)^{2}$.
The equilibrium necessary condition is

$$
\begin{aligned}
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(x_{A}\right)-u_{A}\left(x_{B}\right)\right)=-G\left(t^{*}\right) u_{A}^{\prime}\left(x_{A}\right), \\
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(x_{B}\right)-u_{B}\left(x_{A}\right)\right)=\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(x_{B}\right) .
\end{aligned}
$$

We will assume that the equilibrium is symmetric around 0 . With G uniform it's easy to prove that this must be the case.

Let $z=x_{A}^{*}$ be the equilibrium platform for $v=0$, so $X_{B}^{*}=-z$.
We have $t^{*}=0$ and thus $G\left(t^{*}\right)=\frac{1}{2}$, so the first FOC becomes

$$
\begin{aligned}
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(x_{A}\right)-u_{A}\left(x_{B}\right)\right)=-G\left(t^{*}\right) u_{A}^{\prime}\left(x_{A}\right) \\
& g(0) \frac{1}{2}\left(b+u_{A}(z)-u_{A}(-z)\right)=-\frac{1}{2} u_{A}^{\prime}(z) \\
& g(0) \frac{1}{2}\left(b-(z+1)^{2}+(-z+1)^{2}\right)=\frac{1}{2} 2(z+1) \\
& g(0)(b-4 z)=2(z+1) \\
&(-4 g(0)-2) z=2-g(0) b \\
& z=-\frac{2-g(0) b}{2(1+2 g(0))}
\end{aligned}
$$

Note that we were assuming $g(0) b<l^{\prime}(1)=2$, so $z<0$.

The partial derivatives

Now we proceed to calculate the derivatives $\frac{\partial \tilde{x}_{A}}{\partial x_{B}}, \frac{\partial \tilde{x}_{B}}{\partial x_{A}}, \frac{\partial \tilde{x}_{A}}{\partial v}$ and $\frac{\partial \tilde{x}_{B}}{\partial v}$ evaluated at $x_{A}=z$, $x_{B}=-z, v=0$.

Recall that $\tilde{x}_{A}\left(x_{B}, v\right), \tilde{x}_{B}\left(x_{A}, v\right)$ and $t^{*}\left(x_{A}, x_{B}\right)$ were given by

$$
\begin{aligned}
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(\tilde{x}_{A}\right)-u_{A}\left(x_{B}\right)\right)=-G\left(t^{*}\right) u_{A}^{\prime}\left(\tilde{x}_{A}\right) \\
& g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(\tilde{x}_{B}\right)-u_{B}\left(x_{A}\right)\right)=\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(\tilde{x}_{B}\right) \\
& t^{*}=\frac{x_{A}+x_{B}}{2}+\frac{v}{2\left(x_{B}-x_{A}\right)}
\end{aligned}
$$

Calculating $\frac{\partial \tilde{x}_{A}}{\partial x_{B}}$

We differentiate both sides of the equation

$$
g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(\tilde{x}_{A}\right)-u_{A}\left(x_{B}\right)\right)=-G\left(t^{*}\right) u_{A}^{\prime}\left(\tilde{x}_{A}\right)
$$

with respect to x_{B} and get (ignoring terms that will disappear when setting $v=0$)

$$
g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(u_{A}^{\prime}\left(\tilde{x}_{A}\right) \frac{\partial \tilde{x}_{A}}{\partial x_{B}}-u_{A}^{\prime}\left(x_{B}\right)\right)=-g\left(t^{*}\right) \frac{1}{2}\left(\frac{\partial \tilde{x}_{A}}{\partial x_{B}}+1\right) u_{A}^{\prime}\left(\tilde{x}_{A}\right)-G\left(t^{*}\right) u_{A}^{\prime \prime}\left(\tilde{x}_{A}\right) \frac{\partial \tilde{x}_{A}}{\partial x_{B}} .
$$

We set $\tilde{x}_{A}=z, x_{B}=-z, v=0$, thus $t^{*}=0$, and get

$$
g(0) \frac{1}{2}\left(u_{A}^{\prime}(z) \frac{\partial \tilde{x}_{A}}{\partial x_{B}}-u_{A}^{\prime}(-z)\right)=-g(0) \frac{1}{2}\left(\frac{\partial \tilde{x}_{A}}{\partial x_{B}}+1\right) u_{A}^{\prime}(z)+\frac{\partial \tilde{x}_{A}}{\partial x_{B}} .
$$

Rearranging, we get

$$
\left(g(0) \frac{1}{2} u_{A}^{\prime}(z)+g(0) \frac{1}{2} u_{A}^{\prime}(z)-1\right) \frac{\partial \tilde{x}_{A}}{\partial x_{B}}=g(0) \frac{1}{2} u_{A}^{\prime}(-z)-g(0) \frac{1}{2} u_{A}^{\prime}(z),
$$

so simplifying we arrive at

$$
\frac{\partial \tilde{x}_{A}}{\partial x_{B}}=-\frac{2 g(0) z}{1+2 g(0)(z+1)}
$$

Calculating $\frac{\partial \tilde{x}_{B}}{\partial x_{A}}$

We differentiate both sides of the equation

$$
g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(\tilde{x}_{B}\right)-u_{B}\left(x_{A}\right)\right)=\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(\tilde{x}_{B}\right)
$$

with respect to x_{A} and get (ignoring terms that will disappear when setting $v=0$)

$$
g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(u_{B}^{\prime}\left(\tilde{x}_{B}\right) \frac{\partial \tilde{x}_{B}}{\partial x_{A}}-u_{B}^{\prime}\left(x_{A}\right)\right)=-g\left(t^{*}\right) \frac{1}{2}\left(\frac{\partial \tilde{x}_{B}}{\partial x_{A}}+1\right) u_{B}^{\prime}\left(\tilde{x}_{B}\right)+\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime \prime}\left(\tilde{x}_{B}\right) \frac{\partial \tilde{x}_{B}}{\partial x_{A}} .
$$

We set $\tilde{x}_{A}=z, x_{B}=-z, v=0$, thus $t^{*}=0$, and get

$$
g(0) \frac{1}{2}\left(u_{B}^{\prime}(-z) \frac{\partial \tilde{x}_{B}}{\partial x_{A}}-u_{B}^{\prime}(z)\right)=-g(0) \frac{1}{2}\left(\frac{\partial \tilde{x}_{B}}{\partial x_{A}}+1\right) u_{B}^{\prime}(-z)-\frac{\partial \tilde{x}_{B}}{\partial x_{A}} .
$$

Rearranging, we get

$$
\left(g(0) \frac{1}{2} u_{B}^{\prime}(-z)+g(0) \frac{1}{2} u_{B}^{\prime}(-z)+1\right) \frac{\partial \tilde{x}_{B}}{\partial x_{A}}=g(0) \frac{1}{2} u_{B}^{\prime}(z)-g(0) \frac{1}{2} u_{B}^{\prime}(-z)
$$

so simplifying we arrive at

$$
\frac{\partial \tilde{x}_{B}}{\partial x_{A}}=-\frac{2 g(0) z}{1+2 g(0)(z+1)}
$$

The surprising result is that

$$
\frac{\partial \tilde{x}_{A}}{\partial x_{B}}(-z, 0)=\frac{\partial \tilde{x}_{B}}{\partial x_{A}}(z, 0)
$$

Calculating $\frac{\partial \tilde{x}_{A}}{\partial v}$

We differentiate both sides of the equation

$$
\begin{equation*}
g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}}\left(b+u_{A}\left(\tilde{x}_{A}\right)-u_{A}\left(x_{B}\right)\right)=-G\left(t^{*}\right) u_{A}^{\prime}\left(\tilde{x}_{A}\right) \tag{*}
\end{equation*}
$$

with respect to v and get (ignoring terms that will disappear when setting $v=0$)

$$
\begin{aligned}
g\left(t^{*}\right) \frac{1}{2\left(x_{B}-\tilde{x}_{A}\right)^{2}}\left(b+u_{A}\left(\tilde{x}_{A}\right)-u_{A}\left(x_{B}\right)\right)+g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{A}} u_{A}^{\prime}\left(\tilde{x}_{A}\right) \frac{\partial \tilde{x}_{A}}{\partial v} & = \\
& -g\left(t^{*}\right)\left(\frac{1}{2\left(x_{B}-\tilde{x}_{A}\right)}+\frac{1}{2} \frac{\partial \tilde{x}_{A}}{\partial v}\right) u_{A}^{\prime}\left(\tilde{x}_{A}\right)-G\left(t^{*}\right) u_{A}^{\prime \prime}\left(\tilde{x}_{A}\right) \frac{\partial \tilde{x}_{A}}{\partial v}
\end{aligned}
$$

We set $\tilde{x}_{A}=z, x_{B}=-z, v=0$, thus $t^{*}=0$, and get

$$
g(0) \frac{1}{8 z^{2}}\left(b+u_{A}(z)-u_{A}(-z)\right)+g(0) \frac{1}{2} u_{A}^{\prime}(z) \frac{\partial \tilde{x}_{A}}{\partial v}=-g(0)\left(\frac{1}{4 z}+\frac{1}{2} \frac{\partial \tilde{x}_{A}}{\partial v}\right) u_{A}^{\prime}(z)+\frac{1}{2} 2 \frac{\partial \tilde{x}_{A}}{\partial v} \text {. }
$$

Replacing $g(0)\left(b+u_{A}(z)-u_{A}(-z)\right)=-u_{A}^{\prime}(z)$ from (*) and rearranging, we get

$$
\left(g(0) u_{A}^{\prime}(z)-1\right) \frac{\partial \tilde{x}_{A}}{\partial v}=\frac{1}{4 z}\left(\frac{1}{2 z}-g(0)\right) u_{A}^{\prime}(z),
$$

so simplifying we arrive at

$$
\frac{\partial \tilde{x}_{A}}{\partial v}=\frac{(1+z)(1-2 g(0) z)}{4 z^{2}(1+2 g(0)(z+1))} .
$$

Calculating $\frac{\partial \tilde{x}_{B}}{\partial v}$

We differentiate both sides of the equation

$$
\begin{equation*}
g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(\tilde{x}_{B}\right)-u_{B}\left(x_{A}\right)\right)=\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(\tilde{x}_{B}\right) \tag{*}
\end{equation*}
$$

with respect to v and get (ignoring terms that will disappear when setting $v=0$)

$$
\begin{aligned}
& -g\left(t^{*}\right) \frac{1}{2\left(x_{B}-\tilde{x}_{A}\right)^{2}}\left(b+u_{B}\left(\tilde{x}_{B}\right)-u_{B}\left(x_{A}\right)\right)+g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}} u_{B}^{\prime}\left(\tilde{x}_{B}\right) \frac{\partial \tilde{x}_{B}}{\partial v}= \\
& \\
& \quad-g\left(t^{*}\right)\left(\frac{1}{2\left(x_{B}-\tilde{x}_{A}\right)}+\frac{1}{2} \frac{\partial \tilde{x}_{B}}{\partial v}\right) u_{B}^{\prime}\left(\tilde{x}_{B}\right)+\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime \prime}\left(\tilde{x}_{B}\right) \frac{\partial \tilde{x}_{B}}{\partial v} .
\end{aligned}
$$

We set $\tilde{x}_{A}=z, x_{B}=-z, v=0$, thus $t^{*}=0$, and get

$$
-g(0) \frac{1}{8 z^{2}}\left(b+u_{B}(-z)-u_{B}(z)\right)+g(0) \frac{1}{2} u_{B}^{\prime}(z) \frac{\partial \tilde{x}_{B}}{\partial v}=-g(0)\left(\frac{1}{4 z}+\frac{1}{2} \frac{\partial \tilde{x}_{B}}{\partial v}\right) u_{B}^{\prime}(-z)+\frac{1}{2}(-2) \frac{\partial \tilde{x}_{B}}{\partial v} .
$$

Replacing $g(0)\left(b+u_{A}(z)-u_{A}(-z)\right)=u_{B}^{\prime}(-z)$ from $(*)$ and rearranging, we get

$$
\left(g(0) u_{B}^{\prime}(-z)+1\right) \frac{\partial \tilde{x}_{B}}{\partial v}=\frac{1}{8 z^{2}}(1-2 g(0) z) u_{B}^{\prime}(-z),
$$

so simplifying we arrive at

$$
\frac{\partial \tilde{x}_{B}}{\partial v}=\frac{(1+z)(1-2 g(0) z)}{4 z^{2}(1+2 g(0)(z+1))}
$$

Again, surprisingly we get

$$
\frac{\partial \tilde{x}_{A}}{\partial v}(-z, 0)=\frac{\partial \tilde{x}_{B}}{\partial v}(z, 0) .
$$

We had this expression:

$$
\left(1-\frac{\partial \tilde{x}_{A}}{\partial x_{B}} \frac{\partial \tilde{x}_{B}}{\partial x_{A}}\right) \frac{\partial x_{A}^{*}}{\partial v}=\frac{\partial \tilde{x}_{A}}{\partial x_{B}} \frac{\partial \tilde{x}_{B}}{\partial v}+\frac{\partial \tilde{x}_{A}}{\partial v} .
$$

Using $\frac{\partial \tilde{x}_{A}}{\partial x_{B}}=\frac{\partial \tilde{x}_{B}}{\partial x_{A}}$ and $\frac{\partial \tilde{x}_{A}}{\partial v}=\frac{\partial \tilde{x}_{B}}{\partial v}$, this simplifies to

$$
\begin{aligned}
\left(1-\left(\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right)^{2}\right) \frac{\partial x_{A}^{*}}{\partial v} & =\left(1+\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right) \frac{\partial \tilde{x}_{A}}{\partial v} \\
\left(1-\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right) \frac{\partial x_{A}^{*}}{\partial v} & =\frac{\partial \tilde{x}_{A}}{\partial v} .
\end{aligned}
$$

Using $z=-\frac{2-g(0) b}{2(1+2 g(0))}$ we can verify that $\frac{\partial \tilde{x}_{A}}{\partial x_{B}}<1$, and clearly $\frac{\partial \tilde{x}_{A}}{\partial v}>0$, so we get

$$
\frac{\partial x_{A}^{*}}{\partial v}>0
$$

as we wanted to prove.

What ABOUT $\frac{\partial x_{B}^{*}}{\partial v} ?$

We can use the same strategy: $x_{B}^{*}=\tilde{x}_{B}\left(x_{A}^{*}, v\right)=\tilde{x}_{B}\left(\tilde{x}_{A}\left(x_{B}^{*}, v\right), v\right)$, so

$$
\frac{\partial x_{B}^{*}}{\partial v}=\frac{\partial \tilde{x}_{B}}{\partial x_{A}}\left(\frac{\partial \tilde{x}_{A}}{\partial x_{B}} \frac{\partial x_{B}^{*}}{\partial v}+\frac{\partial \tilde{x}_{A}}{\partial v}\right)+\frac{\partial \tilde{x}_{B}}{\partial v},
$$

and

$$
\left(1-\frac{\partial \tilde{x}_{B}}{\partial x_{A}} \frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right) \frac{\partial x_{B}^{*}}{\partial v}=\frac{\partial \tilde{x}_{B}}{\partial x_{A}} \frac{\partial \tilde{x}_{A}}{\partial v}+\frac{\partial \tilde{x}_{B}}{\partial v} .
$$

We already calculated these partial derivatives. Same reasoning:

$$
\begin{aligned}
\left(1-\left(\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right)^{2}\right) \frac{\partial x_{B}^{*}}{\partial v} & =\left(1+\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right) \frac{\partial \tilde{x}_{A}}{\partial v} \\
\left(1-\frac{\partial \tilde{x}_{A}}{\partial x_{B}}\right) \frac{\partial x_{B}^{*}}{\partial v} & =\frac{\partial \tilde{x}_{A}}{\partial v}
\end{aligned}
$$

and we get

$$
\frac{\partial x_{B}^{*}}{\partial v}=\frac{\partial x_{A}^{*}}{\partial v}>0 .
$$

Conclusion

When we give A a bit of valence advantage, i.e., we move from $v=0$ to $v=\epsilon>0$, both candidates move to the right.

- In the case of A, this means that she moderates, i.e., moves towards the center.
- In the case of B, she moves towards her ideal point, i.e., she becomes more extreme.

Next question. What happens when we give A a lot of valence advantage?
Answer. A moves to her ideal point, and B moves to the right of her ideal point (!).

When v IS LARGE

Recall that

$$
t^{*}=\frac{x_{A}+x_{B}}{2}+\frac{v}{2\left(x_{B}-x_{A}\right)} .
$$

We have

$$
\begin{aligned}
\frac{\partial t^{*}}{\partial x_{A}} & =\frac{1}{2}+\frac{v}{2\left(x_{B}-x_{A}\right)^{2}} \\
\frac{\partial t^{*}}{\partial x_{B}} & =\frac{1}{2}-\frac{v}{2\left(x_{B}-x_{A}\right)^{2}} .
\end{aligned}
$$

It's always the case that $\frac{\partial t^{*}}{\partial x_{A}}>0$. Hence $x_{A} \geq-1$ in equilibrium, because $x_{A}=-1$ is better than any $x_{A}<-1$.

B BECOMES AN EXTREMIST

Let's assume that $v>4$.
Suppose that $x_{B} \leq 1$ in equilibrium. Then $0 \leq x_{B}-x_{A} \leq 2$, hence $\left(x_{B}-x_{A}\right)^{2} \leq 4$ and

$$
\frac{\partial t^{*}}{\partial x_{B}}=\frac{1}{2}-\frac{v}{2\left(x_{B}-x_{A}\right)^{2}}<0 .
$$

In that case, looking at

$$
\frac{\partial U_{B}}{\partial x_{B}}=-g\left(t^{*}\right) \frac{\partial t^{*}}{\partial x_{B}}\left(b+u_{B}\left(x_{B}\right)-u_{B}\left(x_{A}\right)\right)+\left(1-G\left(t^{*}\right)\right) u_{B}^{\prime}\left(x_{B}\right)
$$

we see that $\frac{\partial U_{B}}{\partial x_{B}}>0$ for any $x_{B} \leq 1$. Hence $x_{B} \leq 1$ cannot happen in equilibrium.
Conclusion. $x_{B}^{*}>1$. In words, if $v>4$, i.e., A 's valence advantage is large, B adopts a policy more extreme than her ideal point!

A CHOOSES HER PREFERRED POLICY

Assume that $t^{M} \sim U[-\bar{v}, \bar{v}]$.
Assume that $v>(\bar{v}+1)^{2}$.
We have $-(\bar{v}+1)^{2}+v>0 \geq-\left(\bar{v}-x_{B}\right)^{2}$ for any x_{B}.
Hence if $t^{M}=\bar{v}$, then by choosing $x_{A}=-1 A$ wins the election. Moreover, for any $t^{M} \leq \bar{v}$, this is also the case. Now, we are assuming $t^{M} \sim U[-\bar{v}, \bar{v}]$, hence A always wins the election with $x_{A}=-1$. This is also her ideal policy, hence she will choose it in equilibrium.

Conclusion. If v is large, assuming t^{M} uniform, in equilibrium A chooses her preferred policy.

We are done!

