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Plan for today
Review electoral competition with policy motivations and uncertainty about the voters’
positions in more detail.

Central insight. Downsian competition with

– Office-motivated candidates + no uncertainty → convergence.
– Office-motivated candidates + uncertainty → convergence.
– Policy-motivated candidates + no uncertainty → convergence.
– Policy-motivated candidates + uncertainty → divergence.



The essence of the argument
Let PA(xA, xB) the the probability that A wins if the policy commitments are xA, xB.

Candidate A chooses xA to maximize

U(xA) = PA(xA, xB)(uA(xA) + b) + (1− PA(xA, xB))uA(xB).

Can xA = xB be an equilibrium?

U ′(xB) = ∂

∂xA
PA(xB, xB)(uA(xB)− uA(xB) + b) + PA(xA, xB)u′A(xB).

If b is very small (i.e., the candidate is more policy- than office-motivated), and
∂

∂xA
PA(xB, xB) is small (i.e., there is significant uncertainty about voters’ positions), then

the first term is small, the second dominates, and U ′(xB) < 0, which implies that xA = xB

is not optimal for A, and thus xA = xB can’t be an equilibrium.



The details
We assume that xA ≤ xB, because we saw in class that this is the case in any equilibrium.

Hence PA(xA, xB) = Pr
(
tM < xA+xB

2

)
= G

(
xA+xB

2

)
.

In class we looked at A’s problem. Let’s look at B’s problem now.

B has to maximize

U(xB) := G

(
xA + xB

2

)
uB(xA) +

(
1−G

(
xA + xB

2

))
(uB(xB) + b)

subject to xB ≥ xA.

We have

U ′(xB) = −1
2g

(
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2

)
(uB(xB)− uB(xA) + b) +

+
(

1−G

(
xA + xB

2
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u′B(xB).
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FOC
If xB is an interior optimum (xA < xB < 1) then it satisfies the FOC
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What about the SOC?
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So
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We want this to be negative.

We are happy to assume that g(x)
1−G(x) is increasing. This means that

g′(x)(1−G(x)) + g(x)2 > 0, i.e.,

−g′(x) <
g(x)2

1−G(x) .



So

U ′′(xB) = −1
4g′

(
xA + xB

2

) (
1−G

(
xA+xB

2

))
u′B(xB)

1
2g

(
xA+xB

2

) −

− g

(
xA + xB

2

)
u′B(xB) ∝

∝ −1
2g′

(
xA + xB

2

)
−

g
(

xA+xB
2

)2

1−G
(

xA+xB
2

) .

We want this to be negative.

We are happy to assume that g(x)
1−G(x) is increasing. This means that

g′(x)(1−G(x)) + g(x)2 > 0, i.e.,

−g′(x) <
g(x)2

1−G(x) .



We can plug this inequality in
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So, if U ′(xB) = 0 then U ′′(xB) < 0.
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Implication: there is at most one solution to the FOC. Why? If there were two, they would
be local maxima, but then there is a local minimum between them, contradiction.

Three possibilities:

– the optimum is interior, and hence U ′(xB) = 0,
– xB = 1,
– xB = xA.

Can xB = 1 be optimal?

U ′(1) = −1
2g

(
xA + 1

2

)
(uB(1)− uB(xA) + b) +

+
(

1−G
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xA + 1

2
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u′B(1) =

= −1
2g

(
xA + 1

2

)
(uB(1)− uB(xA) + b) < 0.

B can’t be happy setting xB = 1. By moving a bit to the left he loses very little in policy
but his probability of winning increases, so he is more likely to win office and implement
his policy.
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What about xB = xA?

U ′(xA) = −1
2g (xA) (uB(xA)− uB(xA) + b) + (1−G (xA)) u′B(xA) =

= −1
2g (xA) b + (1−G (xA)) u′B(xA).

– If U ′(xA) < 0, then there can’t be an interior local maximum, because if that is the
case then there is also an interior local minimum, which we know is not the case. So if
U ′(xA) < 0 then xB = xA is the unique optimum.

– If U ′(xA) ≥ 0, then there must be a local minimum, because there is a solution to the
FOC, and we know that it must be unique. Moreover, if U ′(xA) > 0, then xB = xA

can’t be optimal. If U ′(xA) = 0 then xB = xA is the optimum.

So. . .

– If U ′(xA) ≤ 0 then xB = xA is the optimum.
– If U ′(xA) > 0 then the optimum is interior (xB > xA).
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We know that the same applies to xA symmetrically.

So, there are two cases for the equilibrium xA, xB:

– We have xA = xB = x∗, U ′A(x∗) ≥ 0, U ′B(x∗) ≤ 0.
– We have xA < xB, U ′A(xA) = 0, U ′B(xB) = 0.

First case. (xA = xB = x∗) We have

U ′A(x∗) = 1
2g (x∗) (uA(x∗)− uA(x∗) + b) + G (x∗) u′A(x∗) ≥ 0

U ′B(x∗) = −1
2g (x∗) (uB(x∗)− uB(x∗) + b) + (1−G (x∗)) u′B(x∗) ≤ 0

So 1
2g (x∗) b ≥ −G (x∗) u′A(x∗) and 1

2g (x∗) b ≥ (1−G (x∗)) u′B(x∗).

If x∗ = 0 we get the condition g(0)b ≥ u′A(0), which you saw in class (l′(1) > bG′(0)).



Second case. (xA < xB) We have

U ′A(xA) = 1
2g

(
xA + xB

2

)
(uA(xA)− uA(xB) + b)+

+ G

(
xA + xB

2

)
u′A(xA) = 0,

U ′B(xB) = −1
2g

(
xA + xB

2

)
(uB(xB)− uB(xA) + b)+

+
(

1−G

(
xA + xB

2

))
u′B(xB) = 0.

If we assume symmetry, xA = x, xB = −z, this is

U ′A(z) = 1
2g (0) (uA(z)− uA(−z) + b) + G (0) u′A(z) = 0

U ′B(−z) = −1
2g (0) (uB(−z)− uB(z) + b) + (1−G (0))u′B(−z) = 0

These are equivalent, so z solves

g(0)(−l(z + 1) + l(−z + 1) + b) = −l′(z + 1).



Take l(x) = x2. Then the equation for the symmetric equilibrium is

g(0)(−(z + 1)2 + (−z + 1)2 + b) = −2(z + 1).

We can solve for z:
z∗ = 1

4
g(0)b− 2
g(0)− 1

2
.

And we get the natural comparative statics: ∂z∗

∂b > 0 and ∂z∗

∂g(0) > 0.


