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Bayesian updating with continuous distributions
I will tell you a trick that people doing Bayesian statistics use a lot.

Let’s revisit something we did in class.

– There is a parameter θ0 we don’t know.
– We have a flat improper prior: p(θ0) = c > 0.
– We observe a signal θ1|θ0 ∼ N(θ0, σ

2).
– We update our belief about θ0.

So, we want to know the distribution θ0|θ1.

Bayes rule:
p(θ0|θ1) = p(θ1|θ0)p(θ0)

p(θ1) .

The numerator is easy: we are given p(θ1|θ0) and p(θ0).

The denominator is hard to calculate.



The trick
Key observation: it’s just a constant.

Key observation 2: if you know a PDF p(x) up to a constant, then you know it, because
the constant is determined by the formula

∫
p(x) dx = 1.

If you know that p(x) = kf(x) but you don’t know k, you can calculate it:

1 =
∫
p(x) dx =

∫
kf(x) dx = k

∫
f(x) dx,

so
k = 1∫

f(x) dx.

We can ignore constant factors.

Notation: p(x) ∝ f(x) means that p(x) = kf(x), where k > 0 is a constant.



Bayes rule is p(θ0|θ1) = p(θ1|θ0)p(θ0)
p(θ1) , but, since the denominator is a constant, we can write

it simply as
p(θ0|θ1) ∝ p(θ1|θ0)p(θ0).

(If you read Bayesian stats papers, they do this all the time.)

Going back to our example, we have

p(θ0|θ1) ∝ p(θ1|θ0)p(θ0) =

= 1√
2πσ

exp
[
− 1

2σ2 (θ1 − θ0)2
]
c ∝

∝ 1√
2πσ

exp
[
− 1

2σ2 (θ0 − θ1)2
]
.

Now, this function of θ0 integrates to 1, so it must be exactly the PDF. It is clearly the
PDF of a normal N(θ1, σ

2).

Hence, θ0|θ1 ∼ N(θ1, σ
2), which we knew already.



Bayes rule is p(θ0|θ1) = p(θ1|θ0)p(θ0)
p(θ1) , but, since the denominator is a constant, we can write

it simply as
p(θ0|θ1) ∝ p(θ1|θ0)p(θ0).

(If you read Bayesian stats papers, they do this all the time.)

Going back to our example, we have

p(θ0|θ1) ∝ p(θ1|θ0)p(θ0) =

= 1√
2πσ

exp
[
− 1

2σ2 (θ1 − θ0)2
]
c ∝

∝ 1√
2πσ

exp
[
− 1

2σ2 (θ0 − θ1)2
]
.

Now, this function of θ0 integrates to 1, so it must be exactly the PDF. It is clearly the
PDF of a normal N(θ1, σ

2).

Hence, θ0|θ1 ∼ N(θ1, σ
2), which we knew already.



Adding a second signal
Suppose that we observe another signal θ2|θ0 ∼ N(θ0, τ

2), independent of θ1|θ0. We want
the posterior θ0|θ1, θ2.

Bayes rule:
p(θ0|θ1, θ2) ∝ p(θ1, θ2|θ0)p(θ0) =

= p(θ1|θ0)p(θ2|θ0)p(θ0) ∝

∝ 1√
2πσ

exp
[
− 1

2σ2 (θ1 − θ0)2
] 1√

2πτ
exp

[
− 1

2τ2 (θ2 − θ0)2
]
∝

∝ exp
[
− 1

2σ2 (θ1 − θ0)2 − 1
2τ2 (θ2 − θ0)2

]
=

= exp
[
− 1

2σ2 (θ2
0 − 2θ1θ0 + θ2

1)− 1
2τ2 (θ2

0 − 2θ2θ0 + θ2
2)
]

=

= exp
[
−1

2

( 1
σ2 + 1

τ2

)
θ2

0 −
(
θ1
σ2 + θ2

τ2

)
θ0 −

θ2
1
σ2 −

θ2
2
τ2

]
∝

∝ exp
[
−1

2

( 1
σ2 + 1

τ2

)
θ2

0 −
(
θ1
σ2 + θ2

τ2

)
θ0

]



p(θ0|θ1, θ2) ∝

∝ exp
[
−1

2

( 1
σ2 + 1

τ2

)
θ2

0 −
(
θ1
σ2 + θ2

τ2

)
θ0

]
=

= exp

−1
2

( 1
σ2 + 1

τ2

)(
θ0 −

θ1
σ2 + θ2

τ2
1
σ2 + 1

τ2

)2

+

(
θ1
σ2 + θ2

τ2

)2

2
(

1
σ2 + 1

τ2

)
 ∝

∝ exp

−1
2

( 1
σ2 + 1

τ2

)(
θ0 −

θ1
σ2 + θ2

τ2
1
σ2 + 1

τ2

)2 ∝
∝ 1√

2π 1
1

σ2 + 1
τ2

exp

− 1
2 1

1
σ2 + 1

τ2

(
θ0 −

θ1
σ2 + θ2

τ2
1
σ2 + 1

τ2

)2


So. . .

θ0|θ1, θ2 ∼ N
(
θ1
σ2 + θ2

τ2
1
σ2 + 1

τ2
,

1
1
σ2 + 1

τ2

)
.



This is a lot more intuitive in terms of precisions h1 = 1/σ2 and h2 = 1/τ2.

The precision is the inverse of the variance: more noise, less precision.

Written in terms of precisions, the above result is

θ0|θ1, θ2 ∼ N
(
h1θ1 + h2θ2
h1 + h2

,
1

h1 + h2

)
.

So, what happened?

– We got a signal θ1 with precision h1.
– We got a signal θ2 with precision h2.
– Then, our estimate of θ0 is a weighted average of θ1 and θ2, where we weight the

signals according to their precision.
– And the precision of our estimate is the sum of the precisions of the signals.



This generalizes to n signals, in which case we get DeGroot’s formula

θ0|θ1, . . . , θn ∼ N
(
h1θ1 + · · ·+ hnθn
h1 + · · ·+ hn

,
1

h1 + · · ·+ hn

)
.

This formula is key in models of career concerns (Holmström 1999, ReStud, originally
published in an obscure book in 1982). Those models are the basis of models in electoral
accountability (see Scott Ashworth’s papers). So, it’s a useful formula.

The normal distribution is very special in this regard. In general distributions do not
behave as nicely.

Look up “conjugate prior” if you want to know what happens with other distributions.



Correlated signals
There is a state θ ∈ R that nobody knows.

Two leaders, 1 and 2, communicate signals s1i and s2i to a group of agents indexed by i.
Each agent i knows her signals s1i and s2i but doesn’t know the signals of other agents.

For every leader j and agent i we have

sji = θ + ηj + εij ,

with ηj ∼ N(0, σ2
j ) and σij ∼ N(0, τ2

j ), all jointly independent.

Two questions:

– Calculate Ei[θ | s1i, s2i].
– Calculate Ei[s1k | s1i, s2i] for k 6= i.


