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Hidden action
The agent has two actions available: a ∈ {0, 1}. We can think of a = 1 as making effort
and a = 0 as shirking.

The actions produce a stochastic benefit to the principal b ∈ {bL, bH}, where bL < bH .

We have Pr(b = bH |a = 1) = p and Pr(b = bH |a = 0) = p with 0 ≤ p < p < 1.

In words: making effort (choosing a = 1) doesn’t guarantee a good outcome (b = bH), but
it makes it more likely.

The principal chooses ex ante a transfer T contingent on b.

The agent’s payoff is u(T )− ac where u′ > 0, u′′ ≤ 0 and c > 0.

The principal’s payoff is b− T .



First best
Assume that the action a is contractible, meaning that the contract can bind the agent to
choose it (if he signs the contract).

The agent accepts a contract that requires him to choose a = 1 if his expected payoff is
non-negative:

E[u(T )− ac] ≥ 0.

This is
pu(TH) + (1− p)u(TL)− c ≥ 0. (PC)

We assume that the principal writes the contract, so she chooses TH , TL to maximize her
expected payoff

E[b− T ] = p(bH − TH) + (1− p)(bL − TL)

subject to the participation constraint (PC).



In lecture we saw that in the optimal contract (PC) must bind, and if u is strictly concave
(u′′ < 0) then we must have TH = TL.

Let’s review the proof. We wanto to choose TL, TH ∈ R to

maximize p(bH − TH) + (1− p)(bL − TL)
subject to pu(TH) + (1− p)u(TL)− c = 0.

From the (PC) we can get TH as a function of TL:

T̃H(TL) := TH = u−1
[
c− (1− p)TL

p

]
.

So, replacing TH , the problem is to choose TL to maximize

V (TL) := p(bH − T̃H(TL)) + (1− p)(bL − TL).

We have V ′(TL) = −pT̃ ′H(TL)− (1− p).
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Two ways of calculating T̃ ′H(TL).
First, using the inverse function theorem.



Second, differentiating the participation constraint implicitly.



In any case,

T̃ ′H(TL) = −1− p
p

u′(TL)
u′(T̃H(TL))

.

So,

V ′(TL) = (1− p)
[

u′(TL)
u′(T̃H(TL))

− 1
]
.

Now, if TL increases, T̃H(TL) decreases, so u′(TL) decreases and u′(T̃H(TL)) increases, and
u′(TL)

u′(T̃H(TL)) decreases.

Hence V ′(TL) is decreasing, so V is strictly concave, and V ′(TL) = 0 implies that TL
maximizes it.

Now, V ′(TL) = 0 is u′(TL) = u′(T̃H(TL)), so the optimal TL satisfies TL = T̃H(TL) = TH ,
as we wanted to prove.

There is a more conceptual proof that I’d like to show you, but first we need to review
concavity and risk preferences.
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Concave functions and risk
A function u : S → R is concave if for every x, y ∈ S and λ ∈ [0, 1] we have

u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y).

If u is differentiable twice and S ⊂ R then this is equivalent to u′′(x) ≤ 0 for all x ∈ S.

A function u : S → R is strictly concave if for every x, y ∈ S, x 6= y, and λ ∈ (0, 1) we have

u(λx+ (1− λ)y) > λu(x) + (1− λ)u(y).

If u is differentiable twice and S ⊂ R then this is equivalent to u′′(x) < 0 for all x ∈ S.



Jensen’s inequality. Let u : S → R be a concave function, and X be a random variable with
support in S. We have

u(E[X]) = E[u(X)].

If u is strictly concave and X is not constant then

u(E[X]) > E[u(X)].

In the case X = x with proba λ and X = y with proba 1− λ, Jensen’s theorem is just the
definition of concavity. It is a generalization of the definition.

Meaning: an agent with concave utility u always prefers to receive E[X] for sure than the
lottery X.

Hence, concavity means risk-aversion. The agent doesn’t like variance, i.e., risk.



Risk-neutrality means that the agent only cares about E[X], so E[u(X)] = u(E[X]) for
every random variable X. This is satisfied if and only if u is linear, say u(x) = x.

There are two popular measures of risk aversion: absolute risk aversion, defined as

r(x) = −u
′′(x)
u′(x) ,

and relative risk aversion, defined as

ρ(x) = −xu
′′(x)

u′(x) .

These lead to the popular constant absolute risk aversion (CARA) and constant relative
risk aversion (CRRA) utility functions:

ur(x) =
{
−1
re
−rx, if r 6= 0,

x, if r = 0,
and uρ(x) =

{ 1
1−ρx

1−ρ, if ρ 6= 1,
ln(x), if ρ = 1.



Back to the first best
The principal chooses TL, TH ∈ R to

maximize p(bH − TH) + (1− p)(bL − TL)
subject to pu(TH) + (1− p)u(TL)− c ≥ 0.

We want to show that at the optimum we have TL = TH .

Now p(bH − TH) + (1− p)(bL − TL) = E[b− T ] = E[b]− E[T ].

So, the principal chooses TL, TH to minimize what she has to pay, i.e., E[T ]. Note that she
only cares about the expectation.

The participation constraint is E[u(T )]− c ≥ 0. Note that the agent is risk-averse if we
assume that u′′ < 0. He wants as little risk as possible.



Proof that TL = TH

Suppose that the optimal T is not constant, i.e., TL 6= TH .

By Jensen, we have u(E[T ]) > E[u(T )].

By the PC, we have E[u(T )] ≥ c, so u(E[T ]) > c.

So, we can take ε > 0 such that u(E[T ]− ε) > c.

Now T ′L = T ′H = E[T ]− ε satisfy the PC, and E[T ′] = E[T ]− ε, so the principal prefers T ′
to T (she has to pay less money in expectation), contradicting the assumption that T was
optimal.

Hence the optimal T must be constant, i.e., TL = TH , as we wanted to prove.



A couple of comments
Note that this proof works for any number of actions and outcomes.

If u′′ = 0, i.e., the agent is risk neutral, then any TL, TH such that E[T ] = u−1(c) are
optimal. Hence we need strict concavity for the result.

In fact, if the principal is risk-averse and the agent is risk-neutral, we get the opposite
result: in the first best the principal transfers all the risk to the agent. Conceptually, the
principal makes the agent the residual claimant, i.e., she effectively “sells” the job to the
agent.



Questions?



Review of contracting with hidden type
To make this slightly different from the lecture, let’s study this as a political accountability
problem.

There is an incumbent (the agent) and a representative voter (the principal), and two
periods.

In the first period, The incumbent chooses a ≥ 0, her effort, at cost ca, where c ∈ {cL, cH},
0 < cL < cH , is her type, which is private information. We have Pr(c = cL) = µ ∈ (0, 1).



The voter’s utility is u(a), where u′ > 0, u′′ < 0, u(0) = 0. For example, u(x) =
√
x.

The voter offers a menu of contracts: (aL, pL), (aH , pH), which mean that if the incumbent
chooses aT then the voter reelects her with probability pT , for T ∈ {L,H}. If the
incumbent chooses another a, the voter doesn’t reelect.

In the second period, the incumbent gets a wage δ and chooses a2 at cost ca2. Since it’s
the last period, there are no incentives for her to choose a2 > 0, so we can assume that
a2 = 0. Hence every politician behaves the same way in period 2, so the voter is indifferent
between reelecting the period-1 incumbent or not. So the promise to reelect with proba pT
is credible.



The problem is then to choose (aL, pL), (aH , pH) to maximize

µu(aL) + (1− µ)u(aH)

subject to

pLδ − cLaL ≥ pHδ − cLaH , (ICL)
pHδ − cHaH ≥ pLδ − cHaL, (ICH)
pLδ − cLaL ≥ 0, (IRL)
pHδ − cHaH ≥ 0. (IRH)



Solution
It’s given by

aH = pH
cH

δ,

aL = aH + 1− pH
cL

δ,

pL = 1,

u′(aL) = µ

1− µ
cH − cL
cL

u′(aH).


