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PLAN FOR TODAY

— Talk about monotone comparative statics

— Talk about variations on Meltzer-Richard



INCREASING DIFFERENCES

We say that the function f(z,y) has (weak) increasing differences if for every x > 2/,
y > 1/, we have

flay) — f(@'y) = flz.y) = f(@,9).
In other words, f(z,-) — f(a/,-) is (weakly) increasing when x > a'.
If fis C? (i.e., twice differentiable with continuous partial derivatives) then this condition
is equivalent to
2
o°f <
0xdy —

everywhere.



EQUIVALENCE
Why?

Suppose that 775~ > 0. Let = > 2" and g(y) = f(z,y) — f(2,y). Increasing differences

requires that g( ) is weakly increasing, i.e., ¢’'(y) > 0, i.e., 8f (1: y) — 8f( ) >0, ie.,

gg (xz,y) > g; (', y), i.e., g—g(-,y) is increasing. Now, g—i(-,y) is increasing iff -2 8Tay >0

everywhere, which is true. Hence, we have increasing differences.

Suppose that %gy < 0 for some x,y. By continuity, this holds in an open neighborhood of
(z,y). By the previous argument, in that set we have that f has strictly decreasing
differences. Hence it doesn’t have increasing differences.



SUPERMODULARITY

We say that the function f:R"™ — R is supermodular if for every x,y € R™ we have

f(max(z, y) + f(min(z,y)) = f(z) + f(y),
where max(z,y) := (max{x1,y1},..., max{z,, y,}) and
min(x,y) := (min{z,y1},...,min{z,, yn}).

A sublattice of R™ is a subset S such that if z,y € S, we have max(z,y), min(z,y) € S.
For example, S = I} x --- x I, where I; are intervals. We can extend the definition to
functions f :.S — R where S is a sublattice.

Proposition. f is supermodular iff f(x1,...,2,) has increasing differences in z;, z; for
every i # j.
Proof. One implication (supermodularity implies increasing differences) is easy

T’ll do the other for n = 3. It generalizes easily.



Given (z,y,2), (2',y,2") we want to show that

f(max{z,2'}, max{y, y'}, max{z, 2’'}) + f(min{z, 2}, min{y, y'}, min{z, 2'}) > f(x,y,2) + f(«', ¢/, 7).

Indeed, we have

F(max{z, '}, max{y, '}, max{z, #}) — £(&,4,2)
= f(max{x,2'}, max{y,y'}, max{z, 2'}) — f(max{z,z'}, max{y,y'}, 2)
+ f(max{z, 2"}, max{y, vy}, z) — f(max{x,2'}, v, 2)
+ flmax{z, o'}, 9,2) — £(5,9,2)
= f(max{x,2'}, max{y,y'}, z") — f(max{x,2'}, max{y,y'}, min{z, 2'})
+ f(max{z,2'}, v/, 2) — f(max{x,2'}, min{y, '}, 2)
+ f(2',y,2) — f(min{z,2'},y, 2)
> f(x’ Yy, 7/) — f(2',y/,min{z, 2'})
+ f(2',y/,min{z, 2'}) — f(2/, min{y, v}, min{z, 2'})
+ f(«/,min{y,y'}, min{z, 2'}) — f(min{z, 2'}, min{y, v}, min{z, 2'})
= f(:L" 2') — f(min{z, 2'}, min{y, '}, min{z, 2'}),

as desired. W



Corolary. If f is C? then it is supermodular iff

2
o°f S
83:10333- -

for every pair of variables x;,x;, i # j.

Let A, A" C R™ be sublattices. We say that A > A’ iff for every x € A, 2’ € A’ we have
max(x,z’) € A and min(z,2’) € A.

Let f(x,t) : S x T — R be a function and let f*(t) = argmax f(x,t). Assume that it is not
x€S

empty for every t € T. This is the case if, e.g., f is continuous and S is compact (i.e.,
closed and bounded).



ToOPKIS THEOREM

Theorem. If f is supermodular then f*(¢) is a sublattice and f*(t) > f*(¢') if t > ¢/
component-wise (i.e., t; > t; for every ).

Proof. It x,2' € f*(t),
f(max{z,a'}, t) + f(min{z,2'}, 1) > f(z, )+ f(2',t) > f(max{z,2},t) + f(min{z, 2}, 1),

so f(max{z,2'},t) = f(min{x,2'},t) = f(x,t) and max{z,2'}, min{x, 2’} € f*(¢), as
claimed.

Ift>t, xe f*t), s € f*t), we have
f(max{z,2'}, max{t, ¢'}) + f(min{z, 2'}, min{t,'}) > f(z, 1) + f(2',1) = f(max{z,2'}, 1) + f(min{z, 2"}, 1),

so f(max{x,2'},t) = f(z,t) and f(min{z,2'},t") = f(2’,¢'), hence max{x,2'} € f*(¢),
min{z,z'} € f*(t'), and thus f*(t) > f*(t'), as claimed. H

People often use the following corolary: there is a minimum z,(t) and a maximum x*(¢) in
f*(t) and z.(t), *(t) are weakly increasing functions of ¢.



STRATEGIC COMPLEMENTARITIES

Consider a game with players 1,..., N. Player ¢ chooses x; € S; where S; is a sublattice of
R™. They have utilities u;(z1,...,Zn,t), where ¢ is an exogenous parameter.

If u;(x,t) has increasing differences in x;, x; then we say that x;,z; are strategic
complements for i. In words, a “higher” action by j induces ¢ to choose a higher action.

(If u; has decreasing differences, then z;, z; are strategic substitutes. In that case, the more
j does, the less i wants to do.)

Proposition. Suppose that u;(z,t) is supermodular in x, u; is continuous and S; is
compact for every 7. Then there is a Nash equilibrium in pure strategies.

Proof. (Sketch.) Take the smallest action profile z. For each i take 2} to be the largest
best response by i to x_;. Iterate. By Topkis theorem, the sequence of action profiles is
increasing. By compactness, it converges. By continuity, the limit is an equilibrium. W

I won’t prove it, but there is a maximum and a minimum PSNE, and they are weakly
increasing in the parameter t if u;(z,t) are supermodular (Milgrom & Shannon 1994).

Supermodularity implies monotone comparative statics (equilibrium z is increasing in t).



SINGLE-CROSSING PROPERTY

Take u(z,t). Think of z as a policy and t as a type. We have that u is single-crossing iff,
for every 2/ > x, we have that
u(x’,t) > u(z,t) implies that u(z’,t") > u(x,t’) for all ¢’ > ¢ and
— u(z,t) > u(a’,t) implies that u(z,t") > u(a’,t') for all ¢/ < t.
Proposition. Let u(z,t) be single-crossing. If ¢* is the median type and z* is her strictly
preferred policy then z* is a Condorcet winner.

Proof. Let x be other policy.

If © < a* then u(x*, t*) > u(x, t*) implies u(z*,t) > u(x,t) for every t > t*, so a
majority prefers x* to x.

— If x > z* then u(x*, t*) > u(z,t*) implies u(z*,t) > u(z,t) for every t < t*, so again a
majority prefers z* to x. B



SUPERMODULARITY IMPLIES SINGLE CROSSING
Proposition. If u(x,t) is supermodular then it is single crossing.
Proof. We have u(z',t') — u(z,t') > u(a’,t) — u(x,t) for ' >z, t' > ¢, so

— if u(a’,t) > u(x,t) then u(a’,t) — u(z,t) > 0, u(2’,t') — u(x,t’) > 0 and
u(z',t") > u(z,t') for t' > ¢, and

— if u(z,t') > u(2/,t') then 0 > u(2/,¢') — u(z,t'), 0 > u(a’,t) — u(z,t) and
u(z,t) > u(z' t) fort <t'. A

So, to check that u(z,t) is single-crossing, it is enough to verify that

2
s >0
0xdy —

everywhere.



EXAMPLE: UNEMPLOYMENT INSURANCE

Individuals have employment with probability p, in which case they receive income =x.
Otherwise, they are unemployed and receive a benefit b that is the same for everyone.

b is financed by a linear income tax 7 over the employed. There is no distortion. There is
budget balance:

7 [ paolp.w) dpde = [ (1= p)bo(p. ) dpd,
where ¢(p, x) is the density of voters with p, . Hence we have
pT

b=r1 —,
1-p

where pZT is the mean of px and 1 —p is the mean 1 — p, i.e., the share of unemployed voters.

Preferences are represented by
u(t,p,x) = pv((1 —7)x) + (1 = p)o(b),

where v' > 0, v < 0 is the utility over consumption.



p IS CONSTANT
We have
0%u 0
o0 = 87 [ ( T)x)(l - T)}
—pv" (1= 7)2)(1 =)z —pv'((1 - 7))

_ [ (A=) —T)z (] — PV
—p [ DU 1 - )

=plpu((1 = 7)z) — o'((1 - 7)a),

where p, is the relative risk aversion.

So, if p, > 1 (voters are highly risk averse), % > 0, and so income x and taxes T are
complements, i.e., a richer voters wants more taxes! (Moene & Wallerstein 2001, APSR)

Intuition: when p, > 1, insurance works as a normal good, so higher income leads to
higher demand.



Assuming one-dimensional Downs competition, elections implement the median voter’s
preferred tax rate 7*.

Recall that b = 7£% = 7727, and

u(p,z,7,%) =pv((1 —7)x) + (1 — p)v (Tl fpx) :

We know that 7* maximizes u(p, Tmed, 7, Z). What happens if inequality, measured by the
gap T — Tmed, iNcreases?

Keeping T fixed, and assuming xp,eq < T, this means decreasing Tpeq. We know that if
decreases, 7 decreases.

Hence, more inequality leads to less taxes! This is the opposite of Meltzer-Richard.

Note that the unemployment benefit has a redistributive component. Moene & Wallerstein
argue that a large share of social policy in the developed world is a mixture of insurance
and redistribution, so the force that we capture in this toy model is more important than
the one highlighted by Meltzer-Richard. VOC builds on this insight.



We have

and

T CONSTANT

u(p,z,7) =pv((1—71)z)+ (1 —pv (7’1 fp:c)

u / ' p
opor - (1=71)z)x—v (7’1_

a:> P z <0
b

so higher p (i.e., lower risk), lower .

Again, the voters with median unemployment risk decides policy.

The effect of inequality on unemployment benefit generosity depends on whether ppeq < P
or not. If ppeq > P, fixing p we have that if risk inequality increases pyeq increases (i.e., the
median risk decreases) and 7 decreases, so b decreases. In other words, more risk inequality,
less benefit generosity. This is what Rehm (2011, World Politics) observes in the data.



