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Plan for today
– Talk about monotone comparative statics

– Talk about variations on Meltzer-Richard



Increasing differences
We say that the function f(x, y) has (weak) increasing differences if for every x > x′,
y > y′, we have

f(x, y)− f(x′, y) ≥ f(x, y′)− f(x′, y′).

In other words, f(x, ·)− f(x′, ·) is (weakly) increasing when x > x′.

If f is C2 (i.e., twice differentiable with continuous partial derivatives) then this condition
is equivalent to

∂2f

∂x∂y
≥ 0

everywhere.



Equivalence
Why?

Suppose that ∂2f
∂x∂y ≥ 0. Let x > x′ and g(y) = f(x, y)− f(x′, y). Increasing differences

requires that g(y) is weakly increasing, i.e., g′(y) ≥ 0, i.e., ∂f∂y (x, y)− ∂f
∂y (x′, y) ≥ 0, i.e.,

∂f
∂y (x, y) ≥ ∂f

∂y (x′, y), i.e., ∂f∂y (·, y) is increasing. Now, ∂f∂y (·, y) is increasing iff ∂2f
∂x∂y ≥ 0

everywhere, which is true. Hence, we have increasing differences.

Suppose that ∂2f
∂x∂y < 0 for some x, y. By continuity, this holds in an open neighborhood of

(x, y). By the previous argument, in that set we have that f has strictly decreasing
differences. Hence it doesn’t have increasing differences.



Supermodularity
We say that the function f : Rn → R is supermodular if for every x, y ∈ Rn we have

f(max(x, y) + f(min(x, y)) ≥ f(x) + f(y),

where max(x, y) := (max{x1, y1}, . . . ,max{xn, yn}) and
min(x, y) := (min{x1, y1}, . . . ,min{xn, yn}).

A sublattice of Rn is a subset S such that if x, y ∈ S, we have max(x, y),min(x, y) ∈ S.
For example, S = I1 × · · · × In where Ii are intervals. We can extend the definition to
functions f : S → R where S is a sublattice.

Proposition. f is supermodular iff f(x1, . . . , xn) has increasing differences in xi, xj for
every i 6= j.

Proof. One implication (supermodularity implies increasing differences) is easy

I’ll do the other for n = 3. It generalizes easily.



Given (x, y, z), (x′, y′, z′) we want to show that

f(max{x, x′},max{y, y′},max{z, z′}) + f(min{x, x′},min{y, y′},min{z, z′}) ≥ f(x, y, z) + f(x′, y′, z′).

Indeed, we have

f(max{x, x′},max{y, y′},max{z, z′})− f(x, y, z)
= f(max{x, x′},max{y, y′},max{z, z′})− f(max{x, x′},max{y, y′}, z)

+ f(max{x, x′},max{y, y′}, z)− f(max{x, x′}, y, z)
+ f(max{x, x′}, y, z)− f(x, y, z)

= f(max{x, x′},max{y, y′}, z′)− f(max{x, x′},max{y, y′},min{z, z′})
+ f(max{x, x′}, y′, z)− f(max{x, x′},min{y, y′}, z)
+ f(x′, y, z)− f(min{x, x′}, y, z)
≥ f(x′, y′, z′)− f(x′, y′,min{z, z′})

+ f(x′, y′,min{z, z′})− f(x′,min{y, y′},min{z, z′})
+ f(x′,min{y, y′},min{z, z′})− f(min{x, x′},min{y, y′},min{z, z′})

= f(x′, y′, z′)− f(min{x, x′},min{y, y′},min{z, z′}),

as desired. �



Corolary. If f is C2 then it is supermodular iff

∂2f

∂xi∂xj
≥ 0

for every pair of variables xi, xj , i 6= j.

Let A,A′ ⊂ Rn be sublattices. We say that A ≥ A′ iff for every x ∈ A, x′ ∈ A′ we have
max(x, x′) ∈ A and min(x, x′) ∈ A.

Let f(x, t) : S × T → R be a function and let f∗(t) = argmax
x∈S

f(x, t). Assume that it is not

empty for every t ∈ T . This is the case if, e.g., f is continuous and S is compact (i.e.,
closed and bounded).



Topkis Theorem
Theorem. If f is supermodular then f∗(t) is a sublattice and f∗(t) ≥ f∗(t′) if t ≥ t′
component-wise (i.e., ti ≥ t′i for every i).

Proof. If x, x′ ∈ f∗(t),

f(max{x, x′}, t) + f(min{x, x′}, t) ≥ f(x, t) + f(x′, t) ≥ f(max{x, x′}, t) + f(min{x, x′}, t),

so f(max{x, x′}, t) = f(min{x, x′}, t) = f(x, t) and max{x, x′},min{x, x′} ∈ f∗(t), as
claimed.

If t ≥ t′, x ∈ f∗(t), x′ ∈ f∗(t′), we have

f(max{x, x′},max{t, t′}) + f(min{x, x′},min{t, t′}) ≥ f(x, t) + f(x′, t′) ≥ f(max{x, x′}, t) + f(min{x, x′}, t′),

so f(max{x, x′}, t) = f(x, t) and f(min{x, x′}, t′) = f(x′, t′), hence max{x, x′} ∈ f∗(t),
min{x, x′} ∈ f∗(t′), and thus f∗(t) ≥ f∗(t′), as claimed. �

People often use the following corolary: there is a minimum x∗(t) and a maximum x∗(t) in
f∗(t) and x∗(t), x∗(t) are weakly increasing functions of t.



Strategic complementarities
Consider a game with players 1, . . . , N . Player i chooses xi ∈ Si where Si is a sublattice of
Rni . They have utilities ui(x1, . . . , xn, t), where t is an exogenous parameter.

If ui(x, t) has increasing differences in xi, xj then we say that xi, xj are strategic
complements for i. In words, a “higher” action by j induces i to choose a higher action.

(If ui has decreasing differences, then xi, xj are strategic substitutes. In that case, the more
j does, the less i wants to do.)

Proposition. Suppose that ui(x, t) is supermodular in x, ui is continuous and Si is
compact for every i. Then there is a Nash equilibrium in pure strategies.

Proof. (Sketch.) Take the smallest action profile x. For each i take x′i to be the largest
best response by i to x−i. Iterate. By Topkis theorem, the sequence of action profiles is
increasing. By compactness, it converges. By continuity, the limit is an equilibrium. �

I won’t prove it, but there is a maximum and a minimum PSNE, and they are weakly
increasing in the parameter t if ui(x, t) are supermodular (Milgrom & Shannon 1994).

Supermodularity implies monotone comparative statics (equilibrium x is increasing in t).



Single-crossing property
Take u(x, t). Think of x as a policy and t as a type. We have that u is single-crossing iff,
for every x′ > x, we have that

– u(x′, t) > u(x, t) implies that u(x′, t′) > u(x, t′) for all t′ > t and
– u(x, t) > u(x′, t) implies that u(x, t′) > u(x′, t′) for all t′ < t.

Proposition. Let u(x, t) be single-crossing. If t∗ is the median type and x∗ is her strictly
preferred policy then x∗ is a Condorcet winner.

Proof. Let x be other policy.

– If x < x∗ then u(x∗, t∗) > u(x, t∗) implies u(x∗, t) > u(x, t) for every t > t∗, so a
majority prefers x∗ to x.

– If x > x∗ then u(x∗, t∗) > u(x, t∗) implies u(x∗, t) > u(x, t) for every t < t∗, so again a
majority prefers x∗ to x. �



Supermodularity implies single crossing
Proposition. If u(x, t) is supermodular then it is single crossing.

Proof. We have u(x′, t′)− u(x, t′) ≥ u(x′, t)− u(x, t) for x′ > x, t′ > t, so

– if u(x′, t) > u(x, t) then u(x′, t)− u(x, t) > 0, u(x′, t′)− u(x, t′) > 0 and
u(x′, t′) > u(x, t′) for t′ > t, and

– if u(x, t′) > u(x′, t′) then 0 > u(x′, t′)− u(x, t′), 0 > u(x′, t)− u(x, t) and
u(x, t) > u(x′, t) for t < t′. �

So, to check that u(x, t) is single-crossing, it is enough to verify that

∂2f

∂x∂y
≥ 0

everywhere.



Example: unemployment insurance
Individuals have employment with probability p, in which case they receive income x.
Otherwise, they are unemployed and receive a benefit b that is the same for everyone.

b is financed by a linear income tax τ over the employed. There is no distortion. There is
budget balance:

τ

∫
pxφ(p, x) dpdx =

∫
(1− p)bφ(p, x) dpdx,

where φ(p, x) is the density of voters with p, x. Hence we have

b = τ
px

1− p,

where px is the mean of px and 1− p is the mean 1− p, i.e., the share of unemployed voters.

Preferences are represented by

u(τ, p, x) = pv((1− τ)x) + (1− p)v(b),

where v′ > 0, v′′ < 0 is the utility over consumption.



p is constant
We have

∂2u

∂τ∂x
= ∂

∂τ

[
pv′((1− τ)x)(1− τ)

]
= −pv′′((1− τ)x)(1− τ)x− pv′((1− τ))x

= p

[
−v
′′((1− τ)x)(1− τ)x

v′((1− τ)x) − 1
]
v′((1− τ)x)

= p [ρv((1− τ)x)− 1] v′((1− τ)x),

where ρv is the relative risk aversion.

So, if ρv > 1 (voters are highly risk averse), ∂2u
∂τ∂x > 0, and so income x and taxes τ are

complements, i.e., a richer voters wants more taxes! (Moene & Wallerstein 2001, APSR)

Intuition: when ρv > 1, insurance works as a normal good, so higher income leads to
higher demand.



Assuming one-dimensional Downs competition, elections implement the median voter’s
preferred tax rate τ∗.

Recall that b = τ px
1−p = τ p

1−px, and

u(p, x, τ, x) = pv ((1− τ)x) + (1− p)v
(
τ

p

1− px
)
.

We know that τ∗ maximizes u(p, xmed, τ, x). What happens if inequality, measured by the
gap x− xmed, increases?

Keeping x fixed, and assuming xmed < x, this means decreasing xmed. We know that if x
decreases, τ decreases.

Hence, more inequality leads to less taxes! This is the opposite of Meltzer-Richard.

Note that the unemployment benefit has a redistributive component. Moene & Wallerstein
argue that a large share of social policy in the developed world is a mixture of insurance
and redistribution, so the force that we capture in this toy model is more important than
the one highlighted by Meltzer-Richard. VOC builds on this insight.



x constant
We have

u(p, x, τ) = pv ((1− τ)x) + (1− p)v
(
τ

p

1− px
)

and
∂2u

∂p∂τ
= −v′ ((1− τ)x)x− v′

(
τ

p

1− px
)

p

1− px < 0

so higher p (i.e., lower risk), lower τ .

Again, the voters with median unemployment risk decides policy.

The effect of inequality on unemployment benefit generosity depends on whether pmed < p
or not. If pmed > p, fixing p we have that if risk inequality increases pmed increases (i.e., the
median risk decreases) and τ decreases, so b decreases. In other words, more risk inequality,
less benefit generosity. This is what Rehm (2011, World Politics) observes in the data.


