Section 11

MONOTONE COMPARATIVE STATICS AND ECONOMIC POLICY

Juan Dodyk

Gov 2006 - Harvard

April 9, 2020

PLAN FOR TODAY

- Talk about monotone comparative statics
- Talk about variations on Meltzer-Richard

INCREASING DIFFERENCES

We say that the function f(x, y) has (weak) increasing differences if for every x > x', y > y', we have

$$f(x,y) - f(x',y) \ge f(x,y') - f(x',y').$$

In other words, $f(x, \cdot) - f(x', \cdot)$ is (weakly) increasing when x > x'.

If f is C^2 (i.e., twice differentiable with continuous partial derivatives) then this condition is equivalent to

$$\frac{\partial^2 f}{\partial x \partial y} \ge 0$$

everywhere.

Equivalence

Why?

Suppose that $\frac{\partial^2 f}{\partial x \partial y} \ge 0$. Let x > x' and g(y) = f(x, y) - f(x', y). Increasing differences requires that g(y) is weakly increasing, i.e., $g'(y) \ge 0$, i.e., $\frac{\partial f}{\partial y}(x, y) - \frac{\partial f}{\partial y}(x', y) \ge 0$, i.e., $\frac{\partial f}{\partial y}(x, y) \ge \frac{\partial f}{\partial y}(x', y)$, i.e., $\frac{\partial f}{\partial y}(\cdot, y)$ is increasing. Now, $\frac{\partial f}{\partial y}(\cdot, y)$ is increasing iff $\frac{\partial^2 f}{\partial x \partial y} \ge 0$ everywhere, which is true. Hence, we have increasing differences.

Suppose that $\frac{\partial^2 f}{\partial x \partial y} < 0$ for some x, y. By continuity, this holds in an open neighborhood of (x, y). By the previous argument, in that set we have that f has strictly *decreasing* differences. Hence it doesn't have increasing differences.

SUPERMODULARITY

We say that the function $f: \mathbb{R}^n \to \mathbb{R}$ is supermodular if for every $x, y \in \mathbb{R}^n$ we have

 $f(\max(x, y) + f(\min(x, y)) \ge f(x) + f(y),$

where $\max(x, y) := (\max\{x_1, y_1\}, \dots, \max\{x_n, y_n\})$ and $\min(x, y) := (\min\{x_1, y_1\}, \dots, \min\{x_n, y_n\}).$

A sublattice of \mathbb{R}^n is a subset S such that if $x, y \in S$, we have $\max(x, y), \min(x, y) \in S$. For example, $S = I_1 \times \cdots \times I_n$ where I_i are intervals. We can extend the definition to functions $f: S \to \mathbb{R}$ where S is a sublattice.

Proposition. f is supermodular iff $f(x_1, \ldots, x_n)$ has increasing differences in x_i, x_j for every $i \neq j$.

Proof. One implication (supermodularity implies increasing differences) is easy

I'll do the other for n = 3. It generalizes easily.

Given (x, y, z), (x', y', z') we want to show that

 $f(\max\{x, x'\}, \max\{y, y'\}, \max\{z, z'\}) + f(\min\{x, x'\}, \min\{y, y'\}, \min\{z, z'\}) \ge f(x, y, z) + f(x', y', z').$ Indeed, we have

$$\begin{split} &f(\max\{x,x'\},\max\{y,y'\},\max\{z,z'\}) - f(x,y,z) \\ &= f(\max\{x,x'\},\max\{y,y'\},\max\{z,z'\}) - f(\max\{x,x'\},\max\{y,y'\},z) \\ &+ f(\max\{x,x'\},\max\{y,y'\},z) - f(\max\{x,x'\},y,z) \\ &+ f(\max\{x,x'\},\max\{y,y'\},z) - f(\max\{x,x'\},\max\{y,y'\},\min\{z,z'\}) \\ &+ f(\max\{x,x'\},y',z) - f(\max\{x,x'\},\min\{y,y'\},z) \\ &+ f(x',y,z) - f(\min\{x,x'\},y,z) \\ &\geq f(x',y',z') - f(x',y',\min\{z,z'\}) \\ &+ f(x',\min\{y,y'\},\min\{z,z'\}) - f(x',\min\{y,y'\},\min\{z,z'\}) \\ &+ f(x',\min\{y,y'\},\min\{z,z'\}) - f(\min\{x,x'\},\min\{y,y'\},\min\{z,z'\}) \\ &= f(x',y',z') - f(\min\{x,x'\},\min\{y,y'\},\min\{z,z'\}), \end{split}$$

as desired. \blacksquare

Corolary. If f is C^2 then it is supermodular iff

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \ge 0$$

for every pair of variables $x_i, x_j, i \neq j$.

Let $A, A' \subset \mathbb{R}^n$ be sublattices. We say that $A \ge A'$ iff for every $x \in A, x' \in A'$ we have $\max(x, x') \in A$ and $\min(x, x') \in A$.

Let $f(x,t): S \times T \to \mathbb{R}$ be a function and let $f^*(t) = \underset{x \in S}{\operatorname{argmax}} f(x,t)$. Assume that it is not empty for every $t \in T$. This is the case if, e.g., f is continuous and S is compact (i.e., closed and bounded).

TOPKIS THEOREM

Theorem. If f is supermodular then $f^*(t)$ is a sublattice and $f^*(t) \ge f^*(t')$ if $t \ge t'$ component-wise (i.e., $t_i \ge t'_i$ for every i).

Proof. If $x, x' \in f^*(t)$,

 $f(\max\{x, x'\}, t) + f(\min\{x, x'\}, t) \ge f(x, t) + f(x', t) \ge f(\max\{x, x'\}, t) + f(\min\{x, x'\}, t),$

so $f(\max\{x, x'\}, t) = f(\min\{x, x'\}, t) = f(x, t)$ and $\max\{x, x'\}, \min\{x, x'\} \in f^*(t)$, as claimed.

If $t \ge t'$, $x \in f^*(t)$, $x' \in f^*(t')$, we have

 $f(\max\{x,x'\},\max\{t,t'\}) + f(\min\{x,x'\},\min\{t,t'\}) \geq f(x,t) + f(x',t') \geq f(\max\{x,x'\},t) + f(\min\{x,x'\},t'),$

so $f(\max\{x, x'\}, t) = f(x, t)$ and $f(\min\{x, x'\}, t') = f(x', t')$, hence $\max\{x, x'\} \in f^*(t)$, $\min\{x, x'\} \in f^*(t')$, and thus $f^*(t) \ge f^*(t')$, as claimed. ■

People often use the following corolary: there is a minimum $x_*(t)$ and a maximum $x^*(t)$ in $f^*(t)$ and $x_*(t)$, $x^*(t)$ are weakly increasing functions of t.

STRATEGIC COMPLEMENTARITIES

Consider a game with players $1, \ldots, N$. Player *i* chooses $x_i \in S_i$ where S_i is a sublattice of \mathbb{R}^{n_i} . They have utilities $u_i(x_1, \ldots, x_n, t)$, where *t* is an exogenous parameter.

If $u_i(x,t)$ has increasing differences in x_i, x_j then we say that x_i, x_j are *strategic* complements for *i*. In words, a "higher" action by *j* induces *i* to choose a higher action.

(If u_i has decreasing differences, then x_i, x_j are strategic *substitutes*. In that case, the more j does, the less i wants to do.)

Proposition. Suppose that $u_i(x,t)$ is supermodular in x, u_i is continuous and S_i is compact for every i. Then there is a Nash equilibrium in pure strategies.

Proof. (Sketch.) Take the smallest action profile x. For each i take x'_i to be the largest best response by i to x_{-i} . Iterate. By Topkis theorem, the sequence of action profiles is increasing. By compactness, it converges. By continuity, the limit is an equilibrium.

I won't prove it, but there is a maximum and a minimum PSNE, and they are weakly increasing in the parameter t if $u_i(x,t)$ are supermodular (Milgrom & Shannon 1994).

Supermodularity implies monotone comparative statics (equilibrium x is increasing in t).

SINGLE-CROSSING PROPERTY

Take u(x, t). Think of x as a policy and t as a type. We have that u is single-crossing iff, for every x' > x, we have that

$$-u(x',t) > u(x,t)$$
 implies that $u(x',t') > u(x,t')$ for all $t' > t$ and $-u(x,t) > u(x',t)$ implies that $u(x,t') > u(x',t')$ for all $t' < t$.

Proposition. Let u(x,t) be single-crossing. If t^* is the median type and x^* is her strictly preferred policy then x^* is a Condorcet winner.

Proof. Let x be other policy.

- If $x < x^*$ then $u(x^*, t^*) > u(x, t^*)$ implies $u(x^*, t) > u(x, t)$ for every $t > t^*$, so a majority prefers x^* to x.
- If $x > x^*$ then $u(x^*, t^*) > u(x, t^*)$ implies $u(x^*, t) > u(x, t)$ for every $t < t^*$, so again a majority prefers x^* to x. ■

SUPERMODULARITY IMPLIES SINGLE CROSSING

Proposition. If u(x,t) is supermodular then it is single crossing.

Proof. We have $u(x',t') - u(x,t') \ge u(x',t) - u(x,t)$ for x' > x, t' > t, so

- if u(x',t)>u(x,t) then u(x',t)-u(x,t)>0, u(x',t')-u(x,t')>0 and u(x',t')>u(x,t') for t'>t, and
- if u(x,t') > u(x',t') then 0 > u(x',t') u(x,t'), 0 > u(x',t) u(x,t) and u(x,t) > u(x',t) for t < t'. ■

So, to check that u(x,t) is single-crossing, it is enough to verify that

$$\frac{\partial^2 f}{\partial x \partial y} \ge 0$$

everywhere.

EXAMPLE: UNEMPLOYMENT INSURANCE

Individuals have employment with probability p, in which case they receive income x. Otherwise, they are unemployed and receive a benefit b that is the same for everyone.

b is financed by a linear income tax τ over the employed. There is no distortion. There is budget balance:

$$\tau \int px\phi(p,x)\,dpdx = \int (1-p)b\phi(p,x)\,dpdx,$$

where $\phi(p, x)$ is the density of voters with p, x. Hence we have

$$b = \tau \frac{\overline{px}}{1 - \overline{p}}$$

where \overline{px} is the mean of px and $1 - \overline{p}$ is the mean 1 - p, i.e., the share of unemployed voters. Preferences are represented by

$$u(\tau, p, x) = pv((1 - \tau)x) + (1 - p)v(b),$$

where v' > 0, v'' < 0 is the utility over consumption.

p is constant

We have

$$\begin{aligned} \frac{\partial^2 u}{\partial \tau \partial x} &= \frac{\partial}{\partial \tau} \left[pv'((1-\tau)x)(1-\tau) \right] \\ &= -pv''((1-\tau)x)(1-\tau)x - pv'((1-\tau))x \\ &= p \left[-\frac{v''((1-\tau)x)(1-\tau)x}{v'((1-\tau)x)} - 1 \right] v'((1-\tau)x) \\ &= p \left[\rho_v((1-\tau)x) - 1 \right] v'((1-\tau)x), \end{aligned}$$

where ρ_v is the relative risk aversion.

So, if $\rho_v > 1$ (voters are highly risk averse), $\frac{\partial^2 u}{\partial \tau \partial x} > 0$, and so income x and taxes τ are complements, i.e., a richer voters wants more taxes! (Moene & Wallerstein 2001, APSR) Intuition: when $\rho_v > 1$, insurance works as a normal good, so higher income leads to higher demand.

Assuming one-dimensional Downs competition, elections implement the median voter's preferred tax rate τ^* .

Recall that
$$b = \tau \frac{\overline{px}}{1-\overline{p}} = \tau \frac{p}{1-p}\overline{x}$$
, and
$$u(p, x, \tau, \overline{x}) = pv\left((1-\tau)x\right) + (1-p)v\left(\tau \frac{p}{1-p}\overline{x}\right).$$

We know that τ^* maximizes $u(p, x_{\text{med}}, \tau, \overline{x})$. What happens if inequality, measured by the gap $\overline{x} - x_{\text{med}}$, increases?

Keeping \overline{x} fixed, and assuming $x_{\text{med}} < \overline{x}$, this means decreasing x_{med} . We know that if x decreases, τ decreases.

Hence, more inequality leads to less taxes! This is the opposite of Meltzer-Richard.

Note that the unemployment benefit has a redistributive component. Moene & Wallerstein argue that a large share of social policy in the developed world is a mixture of insurance and redistribution, so the force that we capture in this toy model is more important than the one highlighted by Meltzer-Richard. VOC builds on this insight.

x constant

We have

$$u(p, x, \tau) = pv\left((1-\tau)x\right) + (1-p)v\left(\tau\frac{\overline{p}}{1-\overline{p}}x\right)$$

and

$$\frac{\partial^2 u}{\partial p \partial \tau} = -v' \left((1-\tau)x \right) x - v' \left(\tau \frac{\overline{p}}{1-\overline{p}}x \right) \frac{\overline{p}}{1-\overline{p}}x < 0$$

so higher p (i.e., lower risk), lower τ .

Again, the voters with median unemployment risk decides policy.

The effect of inequality on unemployment benefit generosity depends on whether $p_{\text{med}} < \overline{p}$ or not. If $p_{\text{med}} > \overline{p}$, fixing \overline{p} we have that if risk inequality increases p_{med} increases (i.e., the median risk decreases) and τ decreases, so *b* decreases. In other words, more risk inequality, less benefit generosity. This is what Rehm (2011, World Politics) observes in the data.