A proof of Blackwell's theorem

By Juan Dodyk

In these notes I prove the following version of Blackwell's theorem (keep reading for the definitions of the terms).

Theorem 1 (Blackwell). Let Ω, S, S^{\prime} be separable metrizable, $\mu_{0} \in \Delta(\Omega), \sigma: \Omega \rightarrow \Delta(S)$, $\sigma^{\prime}: \Omega \rightarrow \Delta\left(S^{\prime}\right)$ signals with $\mu_{0}, \sigma_{0}=\sigma \circ \mu_{0}$ and $\sigma_{0}^{\prime}=\sigma^{\prime} \circ \mu_{0}$ regular. ${ }^{1}$ Then the following are equivalent:
(1) σ is more informative than σ^{\prime} relative to μ_{0},
(2) $p_{\sigma}=\tau \circ p_{\sigma^{\prime}}$ for a mean-preserving spread τ,
(3) $\int f d p_{\sigma} \geqslant \int f d p_{\sigma^{\prime}}$ for every $f \in C^{\ell}(\Delta(\Omega))$ convex,
(4) σ is more valuable than σ^{\prime} relative to μ_{0}.

Blackwell $(1951,1953)$ proved a stronger version of this theorem for Ω finite. The equivalence (1) \Leftrightarrow (4) was proved for general Ω by Charles Boll in the 50 s, and the equivalence (2) \Leftrightarrow (3) was proved independently by Pierre Cartier and Volker Strassen for Ω compact metrizable in the 60s (see Phelps, 2001, Ch. 15 for a proof based on Cartier's ideas, and Aliprantis and Border, 2006, Th. 19.40 for a proof based on Strassen's). Khan, Yu and Zhang (2020) claim that the full equivalence for general Ω is missing in the literature, and they present a proof of a version of the theorem that is stronger in some respects (part of the result doesn't require Ω to have a topology) but weaker in others (they require the signals to be continuous in some sense and absolutely continuous with respect to a given measure, and the full equivalence requires Ω compact). Their proof relies heavily on a Prokhorov theorem for random measures on Polish spaces taken from Crauel (2002), which has a very long proof, and also an approximation theorem of measures by martingales taken from Khan et al. (2008).

Taking inspiration from the simple proof of Blackwell's theorem for finite Ω, S, S^{\prime} by de Oliveira (2018), I present a proof that is, I believe, significantly more self-contained than that in Khan, Yu and Zhang (2020), and simpler than Cartier's and Strassen's. The main ingredient is a result on disintegration of measures taken from Dellacherie and Meyer (1978) that I interpret as about the existence of posterior beliefs. This result is, I believe, fundamental for game theory and is not hard to prove.

The idea of the proof is as follows. First, I prove that for any signal $\sigma: \Omega \rightarrow \Delta(S)$ there is a direct signal $\tilde{\sigma}: \Omega \rightarrow \Delta(\Delta(\Omega))$, i.e., a signal such that its realizations are the posterior

[^0]beliefs they induce, such that σ and $\tilde{\sigma}$ are equally informative in the Blackwell sense, and they induce the same distribution of posteriors p_{σ}. For $(1) \Rightarrow(2)$, I note that σ is more informative than σ^{\prime} iff $\tilde{\sigma}$ is more informative than $\tilde{\sigma}^{\prime}$, where $\tilde{\sigma}$ and $\tilde{\sigma}^{\prime}$ are direct. Then the fact that $\tilde{\sigma}$ is more informative than $\tilde{\sigma}^{\prime}$ immediately implies that there is a mean preserving spread τ with $p_{\sigma}=\tau \circ p_{\sigma^{\prime}} .(2) \Rightarrow$ (3) follows immediately by a version of Jensen inequality. (3) \Rightarrow (4) follows by noting that, given a decision problem, we can write the expected payoff of an agent who observes the realization of a signal σ as the expected value of $f(\mu)$, where μ follows the distribution of posteriors induced by σ and $f(\mu)$ is the maximum expected payoff when the agent chooses her action under the posterior belief $\mu ; f$ is convex, so (3) implies that σ is more valuable than σ^{\prime}. Finally, (4) $\Rightarrow(1)$, the most difficult step, follows from a separation argument. If (1) doesn't hold, i.e., σ is not more informative than σ^{\prime}, then σ^{\prime}, viewed as a strategy (where the signal realizations are actions), must be outside of the set of strategies available given that the agent observes the realization of σ. Choosing the right topology, this set is closed, so the Hahn-Banach theorem applies, and we obtain a decision problem where the agent does better observing the realization of σ^{\prime} than that of σ, proving that (4) is false.

Notation.-If $\left(X, \Sigma_{X}\right)$ is a measurable space (i.e., Σ_{X} is a σ-algebra), $B(X)$ is the set of bounded Σ_{X}-measurable functions $X \rightarrow \mathbb{R}, \mathcal{M}(X)$ the set of finite signed measures, and $\Delta(X)$ the set of probability measures. If $x \in X, \delta_{x} \in \Delta(X)$ is given by $\delta_{x}(E)=\mathbb{1}(x \in E)$ for any $E \in \Sigma_{X}$. If Σ_{X}, Σ_{Y} are two σ-algebras, $\Sigma_{X} \otimes \Sigma_{Y}$ is the product σ-algebra, i.e., the σ-algebra generated by $\left\{E \times F: E \in \Sigma_{X}, F \in \Sigma_{Y}\right\}$. If $\mu, v \in \mathcal{M}(X), v \ll \mu$ means that v is absolutely continuous with respect to μ. If X is metrizable, I automatically endow it with the Borel σ-algebra \mathcal{B}_{X}, and I endow $\Delta(X)$ with the weak* topology (the minimal topology that makes $\mu \mapsto \int f d \mu$ continuous for every $f \in C_{b}(X)$), which makes $\Delta(X)$ metrizable if X is separable (Aliprantis and Border, 2006, 15.12); $\mu \in \Delta(X)$ is regular iff $\sup \{\mu(K): K \subset X, K$ compact $\}=1$ (see Aliprantis and Border, 2006, 12.5 and 12.6). When I say "by Riesz" I mean by the Riesz Representation Theorem for compact Hausdorff spaces (Aliprantis and Border, 2006, 14.14), and "by Hahn-Banach" means by the Strong Separating Hyperplane Theorem (Aliprantis and Border, 2006, 5.79). I will use several times the following fundamental duality result without mention. It can be proved the same way as Aliprantis and Border (2006, 5.93).

Theorem 2. Let X be a real vector space, and L a set of linear functions $X \rightarrow \mathbb{R}$. We endow X with the minimal topology that makes the functions in L continuous. Then X is a locally convex topological vector space, and X^{*}, the set of linear continuous functions $X \rightarrow \mathbb{R}$, is the vector space generated by L.

A. Stochastic maps

Given two measurable spaces $\left(X, \Sigma_{X}\right),\left(Y, \Sigma_{Y}\right)$, a stochastic map is a function $f: X \rightarrow \Delta(Y)$ such that, for each $g \in B(Y)$, the function $x \in X \mapsto \int g d f(x)$, which we denote $f(g \mid \cdot)$, is
measurable. Given $f: X \rightarrow \Delta(Y)$ and $g: Y \rightarrow \Delta(Z)$ stochastic, we define $g \circ f: X \rightarrow \Delta(Z)$ by $g \circ f(E \mid x)=\int g(E \mid \cdot) d f(x)$. We can prove easily that it's stochastic, and \circ is associative: $(h \circ g) \circ f=h \circ(g \circ f)$. Also, if $\{x\}$ is measurable for every $x \in X$, then X has an identity $\operatorname{id}_{X}: X \rightarrow \Delta(X)$ given by $\operatorname{id}_{X}(x)=\delta_{x}$, which is stochastic. Thus the measurable spaces with measurable singletons form a category whose morphisms are the stochastic maps. We can view measures $\mu \in \Delta(X)$ as stochastic maps $\mu: \bullet \rightarrow \Delta(X)$ from a one-point space, so $f: X \rightarrow \Delta(Y)$ stochastic induces $f \circ \mu \in \Delta(Y)$.

Given a prior $\mu_{0} \in \Delta(\Omega)$ and a signal $\sigma: \Omega \rightarrow \Delta(S)$ (stochastic), we can define the ex ante measure $\sigma_{0}=\sigma \circ \mu_{0}$. We say that the stochastic map $\beta: S \rightarrow \Delta(\Omega)$ is a posterior map if $\int_{F} \beta(E \mid \cdot) d \sigma_{0}=\int_{E} \sigma(F \mid \cdot) d \mu_{0}$ for all $E \in \Sigma_{\Omega}, F \in \Sigma_{S}$, or equivalently $\int f \beta(g \mid \cdot) d \sigma_{0}=$ $\int \sigma(f \mid \cdot) g d \mu_{0}$ for all $f \in B(S), g \in B(\Omega)$. I represent this with the following diagram.

Theorem 3 (Existence of posteriors). If Ω is separable metrizable, (S, Σ_{S}) is measurable, $\mu_{0} \in \Delta(\Omega)$ is regular, and $\sigma: \Omega \rightarrow \Delta(S)$ is stochastic, then there is a posterior map β, and if β, β^{\prime} are posterior maps then $\beta=\beta^{\prime} \sigma_{0}$-a.e.

Proof. ${ }^{2}$ Assume first that Ω is compact. Let $D \subset C(\Omega)$ be dense, numerable, containing $q \mathbb{1}_{\Omega}$ for $q \in \mathbb{Q}$, and closed under addition (it exists by Aliprantis and Border, 2006, 9.14). Every $f \in D$ induces a measure $v_{f}(F)=\int f \sigma(F \mid \cdot) d \mu_{0}$ for $F \in \Sigma_{S}$ such that $v_{f} \ll \sigma_{0}$, so let $\beta(f \mid \cdot)=\frac{d v_{f}}{d \sigma_{0}}$, the Radon-Nikodym derivative. We have that $\beta(\cdot \mid s)$ is additive and monotone $(\beta(f \mid s) \geqslant \beta(g \mid s)$ if $f \geqslant g)$, and $\beta\left(q \mathbb{1}_{\Omega} \mid s\right)=q$ for all $s \in \tilde{S} \in \Sigma_{S}$, where $\sigma_{0}(\tilde{S})=1$, and we get $|\beta(f \mid \cdot)-\beta(g \mid \cdot)| \leqslant\|f-g\|_{\infty}$ in \tilde{S} (we have $f \leqslant g+q \mathbb{1}_{\Omega}$ for any $q \in \mathbb{Q}, q \geqslant\|f-g\|_{\infty}$, so it follows by additivity and monotonicity). For each $s \in \tilde{S}$ and $f \in C(\Omega)$ we define $\beta(f \mid s)=\lim _{n} \beta\left(f_{n} \mid s\right)$ for any $f_{n} \rightarrow f$ with $f_{n} \in D$, clearly well-defined; clearly $\beta(\cdot \mid s)$ is linear and continuous, hence by Riesz it is a measure. For $s \notin \tilde{S}$ we set $\beta(s)$ constant. Let \mathcal{F} be the set of $f \in B(\Omega)$ such that $\beta(f \mid \cdot)$ is measurable; it is a vector space closed by pointwise dominated limits that contains D, hence it contains $C(\Omega)$, and therefore every $f \in B(\Omega)$. We have that $\int_{F} \beta(f \mid \cdot) d \sigma_{0}=\int f \sigma(F \mid \cdot) d \mu_{0}$ for every $F \in \Sigma_{S}, f \in D$, hence it's true for every $f \in B(\Omega)$, and therefore β is a posterior distribution, as desired. If β^{\prime} is another posterior, for every $f \in D$ it agrees σ_{0}-a.e. with β, so $\beta=\beta^{\prime} \sigma_{0}$-a.e.

Now, let Ω be separable. By regularity there is $K=\bigcup_{n \in \mathbb{N}} K_{n}$ with K_{n} compact, $\mu_{0}(K)=1$. We embed Ω in a compact metric space $\tilde{\Omega}$ (see the proof of Aliprantis and Border, 2006, 15.12). Let $s \in S$. We define $\tilde{\mu}_{0} \in \Delta(\tilde{\Omega})$ by $\tilde{\mu}_{0}(E)=\mu_{0}(E \cap K)$ and $\tilde{\sigma}: \tilde{\Omega} \rightarrow \Delta(S)$ by $\tilde{\sigma}(x)=\sigma(x)$ if $x \in K$, and δ_{s} otherwise; $\tilde{\sigma}$ is stochastic since $K \in \mathcal{B}_{\tilde{\Omega}}$. We apply the result and obtain $\tilde{\beta}: S \rightarrow \Delta(\tilde{\Omega})$ measurable. Let $\tilde{S}=\{s \in S: \tilde{\beta}(K \mid s)=1\}, \omega \in K$, and $\beta: S \rightarrow \Delta(\Omega)$ be given

[^1]by $\beta(E \mid s)=\tilde{\beta}(E \cap K \mid s)$ if $s \in \tilde{S}$ and $\beta(s)=\delta_{\omega}$ otherwise. It's easy to see that $\tilde{\sigma}_{0}(\tilde{S})=1$, and β is a posterior of σ. For uniqueness, if β^{\prime} is another posterior map let $\tilde{S}=\left\{s \in S: \beta^{\prime}(K \mid s)=1\right\}$; we have $\sigma_{0}(\tilde{S})=1$, so define $\tilde{\beta}^{\prime}: S \rightarrow \Delta(\tilde{\Omega})$ by $\tilde{\beta}^{\prime}(E \mid s)=\beta(K \cap E \mid s)$ if $s \in \tilde{S}$, and $\tilde{\beta}^{\prime}(s)=\delta_{\omega}$ otherwise. We see that $\tilde{\beta}^{\prime}$ is another posterior map of $\tilde{\sigma}$, so $\tilde{\beta}=\tilde{\beta}^{\prime}$ holds $\tilde{\sigma}_{0}$-a.e., and $\beta=\beta^{\prime}$ holds σ_{0}-a.e.

The following is immediate but worth recording.
Proposition 1. If $\beta: S \rightarrow \Delta(\Omega)$ is a posterior for $\sigma: \Omega \rightarrow \Delta(S)$ over prior $\mu_{0} \in \Delta(\Omega)$ then for every $f \in B(S \times \Omega)$ we have $\iint f(s, \omega) d \sigma(s \mid \omega) d \mu_{0}(\omega)=\iint f(s, \omega) d \beta(\omega \mid s) d \sigma_{0}(s)$.

Proof. Let \mathcal{F} be the set of functions that satisfy the conclusion. It is a vector space and it's closed under pointwise dominated limits. The fact that β is a posterior implies that $f g \in \mathcal{F}$ for every $f \in B(S), g \in B(\Omega)$. Therefore $\mathbb{1}_{E \times F} \in \mathcal{F}$ for every $E \in \Sigma_{S}, F \in \Sigma_{\Omega}$, so $\mathcal{A}=\left\{E \in \Sigma_{S} \otimes \Sigma_{\Omega}: \mathbb{1}_{E} \in \mathcal{F}\right\}$ is a monotone class that includes an algebra including $E \times F$ with $E \in \Sigma_{S}, F \in \Sigma_{\Omega}$, hence $\mathcal{A}=\Sigma_{S} \otimes \Sigma_{\Omega}$, and every simple function $\sum_{i=1}^{n} c_{i} \mathbb{1}_{E_{i}}$ with $E_{i} \in \Sigma_{S} \otimes \Sigma_{\Omega}$ is in \mathcal{F}. We are done, since $\iint f(s, \omega) d \sigma(s \mid \omega) d \mu_{0}(\omega)=\sup \left\{\iint g(s, \omega) d \sigma(s \mid \omega) d \mu_{0}(\omega)\right.$: $0 \leqslant g \leqslant f$ simple $\}$ for $f \geqslant 0$, and similarly for the other one.

Definition 1 (Distribution of posteriors). Given a regular prior $\mu_{0} \in \Delta(\Omega)$ and a signal $\sigma: \Omega \rightarrow \Delta(S)$, a posterior map β_{σ} of σ induces a measure $p_{\sigma} \in \Delta(\Delta(\Omega))$, the distribution of posteriors, given by $p_{\sigma}(E)=\sigma_{0}\left(\beta_{\sigma}^{-1}(E)\right)$ for $E \in \mathcal{B}_{\Delta(\Omega)}$. Notice that it is independent of the choice of β_{σ}.

Proposition 2. Let Ω be separable metrizable, $\mu_{0} \in \Delta(\Omega)$ regular, and $\sigma: \Omega \rightarrow \Delta(S)$ a signal. Then p_{σ} is regular.

Proof. Using the construction and notation of the proof of Theorem 3, we have $\tilde{p} \in \Delta(\tilde{\Omega})$ defined by $\tilde{p}(E)=\tilde{\sigma}_{0}\left(\tilde{\beta}^{-1}(E)\right)$ for $E \in \mathcal{B}_{\Delta(\tilde{\Omega})}$ is regular, since every finite Borel measure on a compact metric space is regular (Aliprantis and Border, 2006, 12.7). Now $p(\Delta(K))=1$ since $\beta(S) \subset \Delta(K)$, so $p(E)=\tilde{p}(E \cap \Delta(K))$ if $E \in \mathcal{B}_{\Delta(\Omega)}$, and p is regular as well.

We have $\int \mu(E) d p_{\sigma}(\mu)=\mu_{0}(E)$ for every $E \in \mathcal{B}_{\Omega}$, i.e., the mean of the posteriors is the prior, since $\int \mu(E) d p_{\sigma}(\mu)=\int \beta_{\sigma}(E \mid \cdot) d \sigma_{0}=\int_{E} \sigma(\Omega \mid \cdot) d \mu_{0}=\mu_{0}(E)$. Conversely, if $p \in \Delta(\Delta(\Omega))$ regular is such that $\int \mu d p(\mu)=\mu_{0}$, define $S=\Delta(\Omega), \beta: S \rightarrow \Delta(\Omega)$ by $\beta(\mu)=\mu$, and let $\sigma: \Omega \rightarrow \Delta(S)$ be a posterior map of β with prior p (it exists by Theorem 3). We have $\beta_{0}=\int \beta(\cdot \mid \mu) d p(\mu)=\int \mu d p(\mu)=\mu_{0}$, so the definition of σ implies $\int \sigma(E \mid \cdot) d \mu_{0}=\int_{E} \beta(\Omega \mid \cdot) d p=p(E)$, and we get $\sigma_{0}(E)=\int \sigma(E \mid \cdot) d \mu_{0}=p(E)$ and $p_{\sigma}(E)=$ $\sigma_{0}\left(\beta^{-1}(E)\right)=\sigma_{0}(E)=p(E)$. In other words, any distribution of posteriors $p \in \Delta(\Delta(\Omega))$ such that $\int \mu d p(\mu)=\mu_{0}$ is in fact the distribution of posteriors of some signal. Let's record this.

Proposition 3. Let Ω be separable metrizable, $\mu_{0} \in \Delta(\Omega)$ and $p \in \Delta(\Delta(\Omega))$ regular. There is a signal $\sigma: \Omega \rightarrow \Delta(S)$ such that $p=p_{\sigma}$ iff $\int \mu d p(\mu)=\mu_{0}$.

In the reasoning above, note that we can induce the posteriors' distribution p_{σ} using a signal $\tilde{\sigma}: \Omega \rightarrow \Delta(\Delta(\Omega))$ such that its posterior map is $\mu \mapsto \mu$, i.e., its realizations are their own posteriors. This motivates the following definition.

Definition 2 (Direct signals). A signal $\sigma: \Omega \rightarrow \Delta(\Delta(\Omega))$ is direct with respect to $\mu_{0} \in$ $\Delta(\Omega)$ if $\mu \mapsto \mu$ is a posterior map with prior μ_{0}.

We want to formalize the intuition that any signal is "informationally equivalent" (in some sense) to a direct signal.

Definition 3 (Blackwell informativeness). Given two signals $\sigma: \Omega \rightarrow \Delta(S)$ and $\sigma^{\prime}: \Omega \rightarrow$ $\Delta\left(S^{\prime}\right)$, we say that σ is Blackwell-more informative than σ^{\prime} relative to $\mu_{0}, \sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$, if there is $\tau: S \rightarrow \Delta\left(S^{\prime}\right)$ stochastic such that $\int \sigma^{\prime}(f \mid \cdot) g d \mu_{0}=\int \tau \circ \sigma(f \mid \cdot) g d \mu_{0}$ holds for every $f \in B\left(S^{\prime}\right), g \in B(\Omega)$. It's easy to see that this relation is symmetric and transitive. We say that $\sigma \sim_{B}^{\mu_{0}} \sigma^{\prime}$, i.e., σ and σ^{\prime} are equally informative, if $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$ and $\sigma^{\prime} \geqslant_{B}^{\mu_{0}} \sigma$.

Proposition 4. If S^{\prime} is separable metrizable then $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$ iff $\sigma^{\prime}=\tau \circ \sigma$ holds μ_{0}-a.e.
Proof. Following the proof of Aliprantis and Border $(2006,15.12)$, there is a countable set $D \subset C_{b}\left(S^{\prime}\right)$ such that $\mu, \mu^{\prime} \in \Delta\left(S^{\prime}\right)$ are equal iff $\mu(f)=\mu^{\prime}(f)$ for every $f \in D$. For each $f \in D, \sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$ implies that $\sigma^{\prime}(f \mid \cdot)=\tau \circ \sigma(f \mid \cdot)$ holds μ_{0}-a.e., hence taking the intersection of those sets, the equation holds for every $f \in D$ in a μ_{0}-full measure set, and in that set we get that $\sigma^{\prime}=\tau \circ \sigma$.

Proposition 5. Let Ω, S be separable metrizable, $\mu_{0} \in \Delta(\Omega)$ regular, $\sigma: \Omega \rightarrow \Delta(S)$ stochastic, and $\sigma_{0}=\sigma \circ \mu_{0}$ regular. There is a $\tilde{\sigma}: \Omega \rightarrow \Delta(\Delta(\Omega))$ direct with $\sigma \sim_{B}^{\mu_{0}} \tilde{\sigma}$, and $p_{\tilde{\sigma}}=p_{\sigma}$.

Proof. Given $\sigma: \Omega \rightarrow \Delta(S)$ we can define a stochastic map $\tilde{\beta}_{\sigma}: S \rightarrow \Delta(\Delta(\Omega))$ by $\tilde{\beta}_{\sigma}(s)=\delta_{\beta_{\sigma}}$ that maps each signal realization to the posterior it induces. We can define a new signal $\tilde{\sigma}: \Omega \rightarrow \Delta(\Delta(\Omega))$ by $\tilde{\sigma}=\tilde{\beta}_{\sigma} \circ \sigma$, so $p_{\sigma}=\tilde{\sigma} \circ \mu_{0}$. Let's verify that $\tilde{\sigma}$ is direct, i.e., the map $\beta_{\tilde{\sigma}}: \mu \mapsto \mu$ is a posterior for $\tilde{\sigma}$. To prove this, we have to verify that $\int f \beta_{\tilde{\sigma}}(g \mid \cdot) d p_{\sigma}=\int g \tilde{\sigma}(f \mid \cdot) d \mu_{0}$ for any $f \in B(\Delta(\Omega)), g \in B(\Omega)$. Now,

$$
\begin{aligned}
\int f \beta_{\tilde{\sigma}}(g \mid \cdot) d p_{\sigma} & =\iint f(\mu) \mu(g) d \tilde{\sigma}(\mu \mid \cdot) d \mu_{0}=\iiint f(\mu) \mu(g) d \tilde{\beta}_{\sigma}(\mu \mid s) d \sigma(s \mid \cdot) d \mu_{0} \\
& =\int f\left(\beta_{\sigma}(s)\right) \beta_{\sigma}(g \mid s) d \sigma_{0}(s)=\int \sigma\left(f \circ \beta_{\sigma} \mid \cdot\right) g d \mu_{0} \\
& =\iint f\left(\beta_{\sigma}(s)\right) d \sigma(s \mid \cdot) g d \mu_{0}=\iint \tilde{\beta}_{\sigma}(f \mid s) d \sigma(s \mid \cdot) g d \mu_{0} \\
& =\int \tilde{\sigma}(f \mid \cdot) g d \mu_{0}
\end{aligned}
$$

as desired.
Clearly $\sigma \geqslant_{B} \tilde{\sigma}$. We have to prove that $\tilde{\sigma} \geqslant_{B}^{\mu_{0}} \sigma$. Let τ be the posterior of $\tilde{\beta}_{\sigma}$ over the prior
σ_{0}, which exists by Theorem 3 since σ_{0} is assumed regular. See the following diagram.

We have to verify that $\int \tau \circ \tilde{\sigma}(f \mid \cdot) g d \mu_{0}=\int \sigma(f \mid \cdot) g d \mu_{0}$ for any $f \in B(S), g \in B(\Omega)$. To start, let's write down the definition of τ. This is that $\int \hat{g} \tau(f \mid \cdot) d p_{\sigma}=\int f \tilde{\beta}_{\sigma}(\hat{g} \mid \cdot) d \sigma_{0}$ for any $f \in B(S), \hat{g} \in B(\Delta(\Omega))$. We apply it to $\hat{g}(\mu)=\mu(g)$, which is in $B(\Delta(\Omega))$ by Aliprantis and Border $(2006,15.13)$. The LHS is

$$
\begin{aligned}
\int \mu(g) \tau(f \mid \mu) d p_{\sigma}(\mu) & =\iint \mu(g) \tau(f \mid \mu) d \tilde{\sigma}(\mu \mid \cdot) d \mu_{0}=\iiint \mu(g) \tau(f \mid \mu) d \tilde{\beta}_{\sigma}(\mu \mid s) d \sigma(s \mid \cdot) d \mu_{0} \\
& =\int \beta_{\sigma}(g \mid s) \tau\left(f \mid \beta_{\sigma}(s)\right) d \sigma_{0}(s)=\int g \sigma\left(\tau\left(f \mid \beta_{\sigma}(\cdot)\right) \mid \cdot\right) d \mu_{0} \\
& =\int g \int \tau\left(f \mid \beta_{\sigma}(s)\right) d \sigma(s \mid \cdot) d \mu_{0}=\int g \iint \tau(f \mid \cdot) d \tilde{\beta}_{\sigma}(s) d \sigma(s \mid \cdot) d \mu_{0} \\
& =\int g \tau \circ \tilde{\sigma}(f \mid \cdot) d \mu_{0}
\end{aligned}
$$

and the RHS is $\int f \tilde{\beta}_{\sigma}(\tilde{g} \mid \cdot) d \sigma_{0}=\int f \beta_{\sigma}(g \mid \cdot) d \sigma_{0}=\int \sigma(f \mid \cdot) g d \mu_{0}$, so we get that $\int \tau \circ$ $\tilde{\sigma}(f \mid \cdot) g d \mu_{0}=\int \sigma(f \mid \cdot) g d \mu_{0}$, hence $\tilde{\sigma} \geqslant_{B}^{\mu_{0}} \sigma$, as desired.

Hence if $\sigma: \Omega \rightarrow \Delta(S)$ and $\sigma^{\prime}: \Omega \rightarrow \Delta\left(S^{\prime}\right)$ are two signals with S, S^{\prime} separable metrizable such that their ex ante measures σ_{0} and σ_{0}^{\prime} are regular, we have that $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$ iff $\tilde{\sigma} \geqslant_{B}^{\mu_{0}} \tilde{\sigma}^{\prime}$, where $\tilde{\sigma}, \tilde{\sigma}^{\prime}: \Omega \rightarrow \Delta(\Delta(\Omega))$ are direct.

I will use a version of Jensen's inequality. First, I need the following.
Definition $4\left(C^{\ell}(\Delta(X))\right.$). If X is metrizable, $C^{\ell}(\Delta(X))$ is the set of functions $f \in B(\Delta(X))$ that are lower-semicontinuous, i.e., the epigraph $\{(\mu, \lambda) \in \Delta(X) \times \mathbb{R}: f(\mu) \leqslant \lambda\}$ is closed, when $\Delta(X)$ has the minimal topology that makes $\hat{g}(\mu)=\mu(g)$ continuous for every $g \in B(X)$.

Proposition 6 (Jensen). Let X be metrizable, $p \in \Delta(\Delta(X)), \bar{p} \in \Delta(X)$ such that $\bar{p}(f)=$ $\int \mu(f) d p(\mu)$ for every $f \in B(X)$, and $f \in C^{\ell}(\Delta(X))$ convex. Then $\int f d p \geqslant f(\bar{p})$.

Proof. ${ }^{3}$ The epigraph $C=\{(\mu, \lambda) \in \Delta(X) \times \mathbb{R}: f(\mu) \leqslant \lambda\}$ is convex and closed in $\mathcal{M}(X) \times \mathbb{R}$ with the topology induced by $\{\hat{g}\}_{g \in B(X)}$. If $\left(\bar{p}, \int f d p\right) \notin C$, by Hahn-Banach there is $\phi: \mathcal{M}(X) \times \mathbb{R} \rightarrow \mathbb{R}$ linear continuous that separates them. Now $\phi(\mu, \lambda)=\hat{g}(\mu)+a \lambda$ for $g \in B(X), a \in \mathbb{R}$. Hence there is $t \in \mathbb{R}$ such that $\hat{g}(\mu)+a f(\mu)>t>\hat{g}(\bar{p})+a \int f d p$ for every $\mu \in \Delta(X)$. Integrating we get $\int(\hat{g}(\mu)+a f(\mu)) d p(\mu)=\hat{g}(\bar{p})+a \int f d p \geqslant t$, absurd. Hence $\int f d p \geqslant f(\bar{p})$, as claimed.

We are ready to prove $(1) \Rightarrow(2) \Rightarrow(3)$ in Theorem 1. First, a definition.

[^2]Definition 5 (Mean-preserving spread). A stochastic map $\tau: \Delta(\Omega) \rightarrow \Delta(\Delta(\Omega)$) is a meanpreserving spread iff for every $\mu \in \Delta(\Omega)$ we have that $\int v d \tau(v \mid \mu)=\mu$, i.e., $\int v(f) d \tau(v \mid \mu)=$ $\mu(f)$ for every $f \in B(\Delta(\Omega))$.

Proposition 7. Let Ω, S, S^{\prime} be separable metrizable, $\mu_{0} \in \Delta(\Omega)$ regular, $\sigma: \Omega \rightarrow \Delta(S)$, $\sigma^{\prime}: \Omega \rightarrow \Delta\left(S^{\prime}\right)$ signals with $\sigma_{0}, \sigma_{0}^{\prime}$ regular. If $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$ then there is a mean-preserving spread $\gamma: \Delta(\Omega) \rightarrow \Delta(\Delta(\Omega))$ such that $p_{\sigma}=\gamma \circ p_{\sigma^{\prime}}$. If the latter is the case, then $\int f d p_{\sigma} \geqslant \int f d p_{\sigma^{\prime}}$ for every $f \in C^{\ell}(\Delta(\Omega))$ convex.

Proof. By Proposition 5 we can assume that $\sigma, \sigma^{\prime}: \Omega \rightarrow \Delta(\Delta(\Omega))$ are direct. We have $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$, so $\sigma^{\prime}=\tau \circ \sigma$ holds μ_{0}-a.e., where $\tau: \Delta(\Omega) \rightarrow \Delta(\Delta(\Omega))$ is stochastic. Let $\gamma: \Delta(\Omega) \rightarrow \Delta(\Delta(\Omega))$ be the posterior map of τ with prior p_{σ}, which exists by Proposition 2 and Theorem 3. This means that $\int f \gamma(g \mid \cdot) d p_{\sigma^{\prime}}=\int \tau(f \mid \cdot) g d p_{\sigma}$ for every $f, g \in B(\Delta(\Omega))$. See the diagram.

We note that $p_{\sigma}=\gamma \circ p_{\sigma^{\prime}}$ by taking $f=\mathbb{1}_{\Delta(\Omega)}$ in the equation above. Moreover, $\int v d \gamma(\nu \mid \mu)=\mu$ holds for $p_{\sigma^{\prime}}$-almost all μ. To see this, take any $f \in B(\Delta(\Omega)), g \in B(\Omega)$, and note that

$$
\begin{aligned}
\int f \int v(g) d \gamma(v \mid \cdot) d p_{\sigma^{\prime}}(\mu)=\int f \gamma(v \mapsto v(g) \mid \cdot) d p_{\sigma^{\prime}} & =\int \tau(f \mid \mu) \mu(g) d p_{\sigma}(\mu) \\
& =\int g \sigma(\tau(f \mid \cdot) \mid \cdot) d \mu_{0}
\end{aligned}
$$

and $\int f(\mu) \mu(g) d p_{\sigma^{\prime}}(\mu)=\int \sigma^{\prime}(f \mid \cdot) g d \mu_{0}=\int g \int \tau(f \mid \mu) d \sigma(\mu \mid \cdot) d \mu_{0}=\int g \sigma(\tau(f \mid \cdot) \mid \cdot) d \mu_{0}$, so they are equal. Noting that the definition of γ and the equation $p_{\sigma}=\gamma \circ p_{\sigma^{\prime}}$ still hold if we change γ in a set of $p_{\sigma^{\prime}}$ measure zero, we can set $\gamma(\mu)=\delta_{\mu}$ for μ in the set where $\int v d \gamma(v \mid \mu)=\mu$ doesn't hold, so it holds everywhere. Therefore γ is a mean-preserving spread, as desired.

Now, let $f \in C^{\ell}(\Delta(\Omega))$ be convex, and $p_{\sigma}=\gamma \circ p_{\sigma^{\prime}}$ where γ is a mean-preserving spread. We have

$$
\int f d p_{\sigma}=\iint f(v) d \gamma(v \mid \cdot) d p_{\sigma^{\prime}} \geqslant \int f\left(\int v d \gamma(v \mid \cdot)\right) d p_{\sigma^{\prime}}=\int f d p_{\sigma^{\prime}}
$$

by Proposition 6.

B. Decision problems and Blackwell's theorem

Let Ω be separable metrizable and $\mu_{0} \in \Delta(\Omega)$. A decision problem is a pair (A, u) where A compact metrizable is a set of actions and $u: A \times \Omega \rightarrow \mathbb{R}$ bounded, the payoff function, is a

Carathéodory function, i.e., $u(\cdot, \omega)$ is continuous for each $\omega \in \Omega$ and $u(a, \cdot)$ is measurable for each $a \in A$. (This implies $u \in B(A \times \Omega)$ by Aliprantis and Border, 2006, 4.51.) A strategy is a stochastic map $\alpha: \Omega \rightarrow \Delta(A)$, and let \mathcal{A} be the set of strategies. We can define the expected payoff of a strategy as $U(\alpha)=\iint u(a, \omega) d \alpha(a \mid \omega) d \mu_{0}(\omega)$. If an agent observes the realization of a signal $\sigma: \Omega \rightarrow \Delta(S)$, she can choose an action $\tilde{\alpha}: S \rightarrow \Delta(A)$ that induces a strategy $\alpha=\tilde{\alpha} \circ \sigma$, so let $\mathcal{A}_{\sigma}=\{\tilde{\alpha} \circ \sigma \mid \tilde{\alpha}: S \rightarrow \Delta(A)$ stochastic $\}$ be the set of strategies available given signal σ, and let $V(\sigma)=\sup \left\{U(\alpha): \alpha \in \mathcal{A}_{\sigma}\right\}$ be the value of signal σ. We say that σ is more valuable than $\sigma^{\prime}, \sigma \geqslant_{D}^{\mu_{0}} \sigma^{\prime}$, if $V(\sigma) \geqslant V\left(\sigma^{\prime}\right)$ for every decision problem (A, u). It's a symmetric and transitive relation.

Proposition 8 . Let Ω be separable metrizable, $\mu_{0} \in \Delta(\Omega)$, and $\sigma: \Omega \rightarrow \Delta(S), \sigma^{\prime}: \Omega \rightarrow$ $\Delta\left(S^{\prime}\right)$ signals. Then $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$ implies $\sigma \geqslant_{D}^{\mu_{0}} \sigma^{\prime}$.

Proof. Assume that $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$, so let $\tau: S \rightarrow \Delta\left(S^{\prime}\right)$ stochastic such that $\int \sigma^{\prime}(f \mid \cdot) g d \mu_{0}=$ $\int \tau \circ \sigma(f \mid \cdot) g d \mu_{0}$ for each $f \in B\left(S^{\prime}\right), g \in B(\Omega)$. Using the same argument as in Proposition 1 we obtain that $\iint f\left(s^{\prime}, \omega\right) d \sigma^{\prime}\left(s^{\prime} \mid \omega\right) d \mu_{0}(\omega)=\iint f\left(s^{\prime}, \omega\right) d \tau \circ \sigma\left(s^{\prime} \mid \omega\right) d \mu_{0}(\omega)$ for every $f \in B\left(S^{\prime} \times \Omega\right)$. Now let (A, u) be a decision problem. We want to show that $V(\sigma) \geqslant V\left(\sigma^{\prime}\right)$. It's enough to show that $\left\{U(\alpha): \alpha \in \mathcal{A}_{\sigma^{\prime}}\right\} \subset\left\{U(\alpha): \alpha \in \mathcal{A}_{\sigma}\right\}$. So let $\alpha: S^{\prime} \rightarrow \Delta(A)$ be stochastic, and let $\alpha^{\prime}=\alpha \circ \tau$. Define $f\left(s^{\prime}, \omega\right)=\alpha\left(u(\cdot, \omega) \mid s^{\prime}\right)$, which is in $B\left(S^{\prime} \times \Omega\right)$. Now $\int u(a, \omega) d \alpha \circ \sigma^{\prime}(a \mid \omega)=\int \alpha\left(u(\cdot, \omega) \mid s^{\prime}\right) d \sigma^{\prime}\left(s^{\prime} \mid \omega\right)=\int f\left(s^{\prime}, \omega\right) d \sigma^{\prime}\left(s^{\prime} \mid \omega\right)$, and $\int u(a, \omega) d \alpha^{\prime} \circ \sigma(s \mid \omega) d \mu_{0}(\omega)=\iint f\left(s^{\prime}, \omega\right) d \tau \circ \sigma\left(s^{\prime} \mid \omega\right) d \mu_{0}(\omega)$. Hence $U\left(\alpha^{\prime} \circ \sigma\right)=$ $U\left(\alpha \circ \sigma^{\prime}\right)$, and we are done.

In fact, we can prove something stronger.
Proposition 9. Let Ω, S, S^{\prime} separable metrizable, $\mu_{0} \in \Delta(\Omega)$ regular, $\sigma: \Omega \rightarrow \Delta(S)$, $\sigma^{\prime}: \Omega \rightarrow \Delta\left(S^{\prime}\right)$ signals with $\sigma_{0}, \sigma_{0}^{\prime}$ regular. Then if $\int f d p_{\sigma} \geqslant \int f d p_{\sigma^{\prime}}$ for all $f \in C^{\ell}(\Delta(\Omega))$ convex then $\sigma \geqslant{ }_{D}^{\mu_{0}} \sigma^{\prime}$.

Proof. Using Proposition 5 and the above we can assume that $\sigma, \sigma^{\prime}: \Omega \rightarrow \Delta(\Delta(\Omega))$ are direct. Now using Proposition 1 we have

$$
\begin{aligned}
V(\sigma) & =\sup \left\{\iint u(\alpha(\mu), \omega) d \sigma(\mu \mid \omega) d \mu_{0}(\omega) \mid \alpha: \Delta(\Omega) \rightarrow \Delta(A) \text { stochastic }\right\} \\
& =\sup \left\{\iint u(\alpha(\mu), \omega) d \mu d p_{\sigma}(\mu) \mid \alpha: \Delta(\Omega) \rightarrow \Delta(A) \text { stochastic }\right\} .
\end{aligned}
$$

By the Measurable Maximum Theorem (Aliprantis and Border, 2006, Theorem 18.19) applied to $\tilde{u}(a, \mu)=\int u(a, \cdot) d \mu$, we have that there is $\alpha: \Delta(\Omega) \rightarrow \Delta(A)$ measurable such that $\alpha(\mu)$ maximizes $\int u(a, \cdot) d \mu$ for each μ, hence $V(\sigma)=\int f d p_{\sigma}$, where $f(\mu)=\max _{a \in \Delta(A)} \int u(a, \cdot) d \mu$. Clearly f is convex, bounded and measurable, and $f \in C^{\ell}(\Delta(\Omega))$, since the epigraph is $\bigcap_{a \in \Delta(A)}\left\{(\mu, \lambda) \in \Delta(\Omega) \times \mathbb{R}: \int u(a, \cdot) d \mu \leqslant \lambda\right\}$, and each of those sets is closed in the relevant topology since $u(a, \cdot) \in B(\Omega)$, so we obtain $V(\sigma) \geqslant V\left(\sigma^{\prime}\right)$.

We are ready to prove the main theorem.

Theorem 1 (Blackwell). Let Ω, S, S^{\prime} be separable metrizable, $\mu_{0} \in \Delta(\Omega), \sigma: \Omega \rightarrow \Delta(S)$, $\sigma^{\prime}: \Omega \rightarrow \Delta\left(S^{\prime}\right)$ signals with $\mu_{0}, \sigma_{0}=\sigma \circ \mu_{0}$ and $\sigma_{0}^{\prime}=\sigma^{\prime} \circ \mu_{0}$ regular. ${ }^{4}$ Then the following are equivalent:
(1) σ is more informative than σ^{\prime} relative to μ_{0},
(2) $p_{\sigma}=\tau \circ p_{\sigma^{\prime}}$ for a mean-preserving spread τ,
(3) $\int f d p_{\sigma} \geqslant \int f d p_{\sigma^{\prime}}$ for every $f \in C^{\ell}(\Delta(\Omega))$ convex,
(4) σ is more valuable than σ^{\prime} relative to μ_{0}.

Proof. We proved (1) $\Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$ in Propositions 7 and 9, so we have to prove (4) \Rightarrow (1). Suppose that (1) doesn't hold, so assume that $\sigma: \Omega \rightarrow \Delta(S), \alpha: \Omega \rightarrow \Delta(A)$ are stochastic, and σ is not more informative than α relative to μ_{0}. This means that there is no $\tilde{\alpha}: S \rightarrow \Delta(A)$ stochastic such that $\alpha=\tilde{\alpha} \circ \sigma \mu_{0}$-a.e. We want to prove that (4) doesn't hold. Let's assume first that A is compact.

Let M_{S} be the vector space of measurable bounded functions $a: S \rightarrow \mathcal{M}(A)$ with the minimal topology that makes the linear functions $L_{f, g}(a)=\int a(f \mid \cdot) g d \sigma_{0}$ continuous, where $f \in C(A)$ and $g \in B(S)$. The set M_{S}^{*} of linear continuous functions $\phi: M_{S} \rightarrow \mathbb{R}$ is the vector space generated by $\left\{L_{f, g}: f \in C(A), g \in B(S)\right\}$. Let A_{S} be the subset of M_{S} composed by $a: S \rightarrow \Delta(A)$. I claim that it is compact. Let $I=C(A) \times B(S)$ and

$$
\iota: A_{S} \rightarrow K=\prod_{(f, g) \in I}\left[-\|f\|_{\infty}\|g\|_{\infty},\|f\|_{\infty}\|g\|_{\infty}\right]
$$

given by $\iota(a)=\left(\int a(f \mid \cdot) g d \sigma_{0}\right)_{(f, g) \in I}$. Let $a_{\alpha} \in A_{S}$ be a net. By Tychonoff, K is compact, hence $\iota\left(a_{\alpha}\right)$ has a convergent subnet $\iota\left(a_{\alpha_{\beta}}\right) \rightarrow \bar{a} \in K$. We proceed as in the proof of Theorem 3 and construct $a: S \rightarrow \Delta(A)$ measurable such that $\int a(f \mid \cdot) g d \sigma_{0}=\bar{a}(f, g)$ for all $f \in C(A), g \in B(S)$. Let $D \subset C(A)$ be dense, numerable, containing $q \mathbb{1}_{A}$ for every $q \in \mathbb{Q}$, and closed under addition. Every $f \in D$ induces a function $v_{f}: C(S) \rightarrow \mathbb{R}$ given by $v_{f}(g)=\bar{a}(f, g)$; given that $\iota\left(a_{\alpha_{\beta}}\right) \rightarrow \bar{a}$, we have that v_{f} is linear and continuous, hence it's a measure, and we see that $v_{f} \ll \sigma_{0}$. Hence we can define $a(f \mid \cdot)=\frac{d v_{f}}{d \sigma_{0}}$. In a σ_{0} full measure set \tilde{S} we have that $a(\cdot \mid s)$ is additive, monotone, and $a\left(q \mathbb{1}_{A} \mid s\right)=q$ for every $q \in \mathbb{Q}$, hence $|a(f \mid \cdot)-a(g \mid \cdot)| \leqslant\|f-g\|_{\infty}$ in \tilde{S}. For each $s \in \tilde{S}$ and $f \in C(A)$ we define $a(f \mid s)=\lim _{n} a\left(f_{n} \mid s\right)$ for any $f_{n} \rightarrow f$ with $f_{n} \in D$; it's well defined and $a(\cdot \mid s)$ is linear continuous, hence $a(\cdot \mid s) \in \Delta(A)$ by Riesz. We extent a to S by setting $a(\cdot \mid s) \in \Delta(A)$ constant (arbitrary) for $s \in \tilde{S}^{c}$. Let $\mathcal{F}=\{f \in B(A): a(f \mid \cdot)$ is measurable $\}$; we have $D \subset \mathcal{F}$ and \mathcal{F} is a vector space closed by pointwise limits, hence $C(A) \subset \mathcal{F}$ and $\mathcal{F}=B(A)$. Therefore $a \in A_{S}$, and $\int a(f \mid \cdot) g d \sigma_{0}=\int \lim _{n} a\left(f_{n} \mid \cdot\right) g d \sigma_{0}=\lim _{n} \int a\left(f_{n} \mid \cdot\right) g d \sigma_{0}=\lim _{n} \bar{a}\left(f_{n}, g\right)=\bar{a}(f, g)$ since $\bar{a}(\cdot, g)$ is continuous for every $g \in B(S)$, hence $\iota(a)=\bar{a}$, and $\iota\left(a_{\alpha_{\beta}}\right) \rightarrow \iota(a)$, which implies $a_{\alpha_{\beta}} \rightarrow a$ in A_{S}. Hence A_{S} is compact, as claimed.

[^3]We define M_{Ω} and A_{Ω} similarly, except we use μ_{0} instead of σ_{0} when defining the topology. Let $\hat{\sigma}: A_{S} \rightarrow A_{\Omega}$ be given by $\hat{\sigma}(a)=a \circ \sigma$. It is continuous: if $a_{\alpha} \rightarrow a$ in A_{S}, and $f \in C(A)$, $g \in B(\Omega)$, we have

$$
\begin{aligned}
\int \hat{\sigma}\left(a_{\alpha}\right)(f \mid \cdot) g d \mu_{0} & =\int a_{\alpha} \circ \sigma(f \mid \cdot) g d \mu_{0}=\int \sigma\left(a_{\alpha}(f \mid \cdot) \mid \cdot\right) g d \mu_{0} \\
& =\int a_{\alpha}(f \mid \cdot) \beta_{\sigma}(g \mid \cdot) d \sigma_{0} \rightarrow \int a(f \mid \cdot) \beta_{\sigma}(g \mid \cdot) d \sigma_{0} \\
& =\int \hat{\sigma}(a)(f \mid \cdot) g d \mu_{0}
\end{aligned}
$$

so $\hat{\sigma}\left(a_{\alpha}\right) \rightarrow \hat{\sigma}(a)$. Its image is $\hat{\sigma}\left(A_{S}\right)=\left\{a \circ \sigma: a \in A_{S}\right\}$, which is compact since A_{S} is compact.

Let $N=\left\{a \in M_{\Omega}: a=0 \mu_{0}\right.$-a.e. $\}$, a closed vector subspace of M_{Ω}, and $\pi: M_{\Omega} \rightarrow M_{\Omega} / N$ the projection to the quotient space. For each $f \in M_{\Omega}^{*}$ we have $\left.f\right|_{N}=0$ (since that is true for every $L_{f, g}$ with $f \in C(A), g \in B(\Omega)$), hence there is $\hat{f}: M_{\Omega} / N \rightarrow \mathbb{R}$ linear given by $\hat{f}(\pi(a))=f(a)$. We endow M_{Ω} / N with the minimal topology that makes them continuous; π is continuous, and M_{Ω} / N is Hausdorff. The assumption that σ is not more informative than α relative to μ_{0} means that $\pi(\alpha) \notin \pi\left(\hat{\sigma}\left(A_{S}\right)\right)$. Now both are convex and compact, hence by Hahn-Banach there is $\hat{\phi}: M_{\Omega} \rightarrow \mathbb{R}$ linear continuous and $t \in \mathbb{R}$ such that $\hat{\phi}(\pi(\alpha))>t>\hat{\phi}(\pi(a \circ \sigma))$ for all $a \in A_{S}$. Let $\phi=\hat{\phi} \circ \pi$. It is in M_{Ω}^{*}, therefore $\phi(a)=\sum_{i=1}^{n} c_{i} \int a\left(f_{i} \mid \cdot\right) g_{i} d \mu_{0}$ for some $c_{i} \in \mathbb{R}$, $f_{i} \in C(A), g_{i} \in B(\Omega)$, so $\phi(a)=\int u(a(\omega), \omega) d \mu_{0}(\omega)$ for $u(a, \omega)=\sum_{i=1}^{n} c_{i} f_{i}(a) g_{i}(\omega)$, which is bounded, continuous in a and measurable in ω. Hence (A, u) is a decision problem and $U(\alpha)>t>U\left(\alpha^{\prime}\right)$ for every $\alpha^{\prime} \in \mathcal{A}_{\sigma}$, so $V(\alpha)>V(\sigma)$ and (4) doesn't hold, as desired.

Now, let's prove it for A separable. We proceed as in the proof of Aliprantis and Border (2006, 15.12). There is \tilde{A} compact metrizable such that A is a topological subspace of \tilde{A}. By regularity of α_{0} there is $K=\bigcup_{n \in \mathbb{N}} K_{n}$ with $K_{n} \subset A$ compact (therefore also compact in \tilde{A}) such that $\alpha_{0}(K)=1$, so by modifying α in a μ_{0}-null set we can take $\alpha: \Omega \rightarrow \Delta(K) \subset \Delta(\tilde{A})$, since $K \in \mathcal{B}_{\tilde{A}}$. Suppose that there is $\tilde{a}: S \rightarrow \Delta(\tilde{A})$ such that $\alpha=\tilde{a} \circ \sigma \mu_{0}$-a.e. Again, we can modify \tilde{a} in a σ_{0}-null set so that $\tilde{a}: S \rightarrow \Delta(K)$ and $\alpha=\tilde{a} \circ \sigma$ still holds μ_{0}-a.e. This is absurd since we are assuming that (1) doesn't hold. Therefore we can apply what we proved for \tilde{A}, and we obtain a decision problem (\tilde{A}, u) such that $V(\alpha)>V(\sigma)$, hence (4) doesn't hold.

Comment.-If Ω is compact, the theorem still holds if we change (3) by a weaker version, namely, that $\int f d p_{\sigma} \geqslant \int f d p_{\sigma^{\prime}}$ for every $f \in C(\Delta(\Omega))$ convex (3^{\prime}). Aliprantis and Border (2006, 19.40) proves (2) $\Leftrightarrow\left(3^{\prime}\right)$, but my proof of $(3) \Rightarrow(4)$ breaks down with (3^{\prime}). To complete the proof it's enough to show $(2) \Rightarrow(1)$, since we proved that $(1) \Rightarrow(2)$ in Proposition 7 and $(1) \Leftrightarrow(4)$ in Proposition 8 and Theorem 1. The proof of $(2) \Rightarrow(1)$ is in fact very easy.

Proposition 10. Let Ω, S, S^{\prime} separable metrizable, $\mu_{0} \in \Delta(\Omega), \sigma: \Omega \rightarrow \Delta(S), \sigma^{\prime}: \Omega \rightarrow$ $\Delta\left(S^{\prime}\right)$ signals with $\mu_{0}, \sigma_{0}, \sigma_{0}^{\prime}$ regular. If there is a mean-preserving spread $\gamma: \Delta(\Omega) \rightarrow$ $\Delta(\Delta(\Omega))$ such that $p_{\sigma}=\gamma \circ p_{\sigma^{\prime}}$ then $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$.

Proof. We can assume that σ, σ^{\prime} are direct by Proposition 5. Take the posterior map of γ with prior $p_{\sigma^{\prime}}$. See the diagram:

Take $\beta: \mu \mapsto \mu$, the posterior of both σ and $\sigma^{\prime}, f \in B(\Delta(\Omega))$ and $g \in B(\Omega)$. By the definition of τ we have $\int \tau(f \mid \cdot) \beta(g \mid \cdot) d p_{\sigma}=\int f \gamma(\beta(g \mid \cdot) \mid \cdot) d p_{\sigma^{\prime}}$. The LHS is $\int \sigma(\tau(f \mid \cdot) \mid \cdot) g d \mu_{0}=$ $\int \tau \circ \sigma(f \mid \cdot) g \mu_{0}$, and the RHS is $\int f \gamma\left(\beta(g|\cdot| \cdot) d p_{\sigma^{\prime}}=\int f \beta(g \mid \cdot) d p_{\sigma^{\prime}}=\int \sigma^{\prime}(f \mid \cdot) g d \mu_{0}\right.$, since $\gamma(\beta(g \mid \cdot) \mid \mu)=\int v(g) d \gamma(v \mid \mu)=\mu(g)=\beta(g \mid \mu)$ by the definition of γ. Hence $\int \sigma^{\prime}(f \mid \cdot) g d \mu_{0}=$ $\int \tau \circ \sigma(f \mid \cdot) g \mu_{0}$, i.e., $\sigma \geqslant_{B}^{\mu_{0}} \sigma^{\prime}$.

References

Aliprantis, Charalambos D. and Kim C. Border. 2006. Infinite Dimensional Analysis: A Hitchhiker's Guide. 3rd [rev. and enl.] ed ed. Berlin ; New York: Springer.

Blackwell, David. 1951. "Comparison of Experiments." Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability 2:93-103.

Blackwell, David. 1953. "Equivalent Comparisons of Experiments." The Annals of Mathematical Statistics 24(2):265-272.

Crauel, H. 2002. Random Probability Measures on Polish Spaces. Number v. 11 in "Stochastics Monographs" London ; New York: Taylor \& Francis.
de Oliveira, Henrique. 2018. "Blackwell's Informativeness Theorem Using Diagrams." Games and Economic Behavior 109:126-131.

Dellacherie, Claude and Paul-Andre Meyer. 1978. Probabilities and Potential. A. NorthHolland.

Khan, M Ali, Haomiao Yu and Zhixiang Zhang. 2020. "A Missing Equivalence Theorem on Information Structures on a General State Space.".

Khan, M. Ali, Yeneng Sun, Rabee Tourky and Zhixiang Zhang. 2008. "Similarity of Differential Information with Subjective Prior Beliefs." Journal of Mathematical Economics 44(9):10241039.

Phelps, Robert R. 2001. Lectures on Choquet's Theorem. Number 1757 in "Lecture Notes in Mathematics" 2nd ed ed. Berlin ; New York: Springer.

[^0]: ${ }^{1}$ Note that every (Borel) probability measure in a Polish space is regular (Aliprantis and Border, 2006, 12.7), so if we assume Ω, S, S^{\prime} Polish we can drop the assumption that $\mu_{0}, \sigma_{0}, \sigma_{0}^{\prime}$ are regular.

[^1]: ${ }^{2}$ I adapt the proof in Dellacherie and Meyer (1978, p. 78), which establishes a very similar result.

[^2]: ${ }^{3}$ This is folklore, but it's easier to include a proof than to find a proof of this exact version in the literature.

[^3]: ${ }^{4}$ Note that every (Borel) probability measure in a Polish space is regular (Aliprantis and Border, 2006, 12.7), so if we assume Ω, S, S^{\prime} Polish we can drop the assumption that $\mu_{0}, \sigma_{0}, \sigma_{0}^{\prime}$ are regular.

