
A proof of Blackwell’s theorem

By Juan Dodyk

In these notes I prove the following version of Blackwell’s theorem (keep reading for the
definitions of the terms).

Theorem 1 (Blackwell). Let Ω, 𝑆, 𝑆′ be separable metrizable, `0 ∈ Δ(Ω), 𝜎 : Ω → Δ(𝑆),
𝜎′ : Ω → Δ(𝑆′) signals with `0, 𝜎0 = 𝜎 ◦ `0 and 𝜎′

0 = 𝜎′ ◦ `0 regular.1 Then the following
are equivalent:

(1) 𝜎 is more informative than 𝜎′ relative to `0,
(2) 𝑝𝜎 = 𝜏 ◦ 𝑝𝜎′ for a mean-preserving spread 𝜏,
(3)

∫
𝑓 𝑑𝑝𝜎 ⩾

∫
𝑓 𝑑𝑝𝜎′ for every 𝑓 ∈ 𝐶ℓ (Δ(Ω)) convex,

(4) 𝜎 is more valuable than 𝜎′ relative to `0.

Blackwell (1951, 1953) proved a stronger version of this theorem for Ω finite. The equiv-
alence (1) ⇔ (4) was proved for general Ω by Charles Boll in the 50s, and the equivalence
(2) ⇔ (3) was proved independently by Pierre Cartier and Volker Strassen for Ω compact
metrizable in the 60s (see Phelps, 2001, Ch. 15 for a proof based on Cartier’s ideas, and
Aliprantis and Border, 2006, Th. 19.40 for a proof based on Strassen’s). Khan, Yu and Zhang
(2020) claim that the full equivalence for general Ω is missing in the literature, and they present
a proof of a version of the theorem that is stronger in some respects (part of the result doesn’t
require Ω to have a topology) but weaker in others (they require the signals to be continuous in
some sense and absolutely continuous with respect to a given measure, and the full equivalence
requiresΩ compact). Their proof relies heavily on a Prokhorov theorem for random measures on
Polish spaces taken from Crauel (2002), which has a very long proof, and also an approximation
theorem of measures by martingales taken from Khan et al. (2008).

Taking inspiration from the simple proof of Blackwell’s theorem for finite Ω, 𝑆, 𝑆′ by de
Oliveira (2018), I present a proof that is, I believe, significantly more self-contained than that in
Khan, Yu and Zhang (2020), and simpler than Cartier’s and Strassen’s. The main ingredient is
a result on disintegration of measures taken from Dellacherie and Meyer (1978) that I interpret
as about the existence of posterior beliefs. This result is, I believe, fundamental for game theory
and is not hard to prove.

The idea of the proof is as follows. First, I prove that for any signal 𝜎 : Ω → Δ(𝑆) there
is a direct signal �̃� : Ω → Δ(Δ(Ω)), i.e., a signal such that its realizations are the posterior

1Note that every (Borel) probability measure in a Polish space is regular (Aliprantis and Border, 2006, 12.7),
so if we assume Ω, 𝑆, 𝑆′ Polish we can drop the assumption that `0, 𝜎0, 𝜎

′
0 are regular.
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beliefs they induce, such that 𝜎 and �̃� are equally informative in the Blackwell sense, and they
induce the same distribution of posteriors 𝑝𝜎. For (1) ⇒ (2), I note that 𝜎 is more informative
than 𝜎′ iff �̃� is more informative than �̃�′, where �̃� and �̃�′ are direct. Then the fact that �̃� is
more informative than �̃�′ immediately implies that there is a mean preserving spread 𝜏 with
𝑝𝜎 = 𝜏 ◦ 𝑝𝜎′. (2) ⇒ (3) follows immediately by a version of Jensen inequality. (3) ⇒ (4)
follows by noting that, given a decision problem, we can write the expected payoff of an agent
who observes the realization of a signal 𝜎 as the expected value of 𝑓 (`), where ` follows the
distribution of posteriors induced by 𝜎 and 𝑓 (`) is the maximum expected payoff when the
agent chooses her action under the posterior belief `; 𝑓 is convex, so (3) implies that 𝜎 is
more valuable than 𝜎′. Finally, (4) ⇒ (1), the most difficult step, follows from a separation
argument. If (1) doesn’t hold, i.e., 𝜎 is not more informative than 𝜎′, then 𝜎′, viewed as
a strategy (where the signal realizations are actions), must be outside of the set of strategies
available given that the agent observes the realization of 𝜎. Choosing the right topology, this
set is closed, so the Hahn-Banach theorem applies, and we obtain a decision problem where the
agent does better observing the realization of 𝜎′ than that of 𝜎, proving that (4) is false.

Notation.—If (𝑋, Σ𝑋) is a measurable space (i.e., Σ𝑋 is a 𝜎-algebra), 𝐵(𝑋) is the set
of bounded Σ𝑋-measurable functions 𝑋 → ℝ, M(𝑋) the set of finite signed measures, and
Δ(𝑋) the set of probability measures. If 𝑥 ∈ 𝑋 , 𝛿𝑥 ∈ Δ(𝑋) is given by 𝛿𝑥 (𝐸) = 1(𝑥 ∈ 𝐸)
for any 𝐸 ∈ Σ𝑋 . If Σ𝑋 , Σ𝑌 are two 𝜎-algebras, Σ𝑋 ⊗ Σ𝑌 is the product 𝜎-algebra, i.e.,
the 𝜎-algebra generated by {𝐸 × 𝐹 : 𝐸 ∈ Σ𝑋 , 𝐹 ∈ Σ𝑌 }. If `, a ∈ M(𝑋), a ≪ ` means
that a is absolutely continuous with respect to `. If 𝑋 is metrizable, I automatically endow
it with the Borel 𝜎-algebra B𝑋 , and I endow Δ(𝑋) with the weak* topology (the minimal
topology that makes ` ↦→

∫
𝑓 𝑑` continuous for every 𝑓 ∈ 𝐶𝑏 (𝑋)), which makes Δ(𝑋)

metrizable if 𝑋 is separable (Aliprantis and Border, 2006, 15.12); ` ∈ Δ(𝑋) is regular iff
sup{`(𝐾) : 𝐾 ⊂ 𝑋, 𝐾 compact} = 1 (see Aliprantis and Border, 2006, 12.5 and 12.6). When
I say “by Riesz” I mean by the Riesz Representation Theorem for compact Hausdorff spaces
(Aliprantis and Border, 2006, 14.14), and “by Hahn-Banach” means by the Strong Separating
Hyperplane Theorem (Aliprantis and Border, 2006, 5.79). I will use several times the following
fundamental duality result without mention. It can be proved the same way as Aliprantis and
Border (2006, 5.93).

Theorem 2. Let 𝑋 be a real vector space, and 𝐿 a set of linear functions 𝑋 → ℝ. We endow
𝑋 with the minimal topology that makes the functions in 𝐿 continuous. Then 𝑋 is a locally
convex topological vector space, and 𝑋∗, the set of linear continuous functions 𝑋 → ℝ, is the
vector space generated by 𝐿.

A. Stochastic maps

Given two measurable spaces (𝑋, Σ𝑋), (𝑌, Σ𝑌 ), a stochastic map is a function 𝑓 : 𝑋 → Δ(𝑌 )
such that, for each 𝑔 ∈ 𝐵(𝑌 ), the function 𝑥 ∈ 𝑋 ↦→

∫
𝑔 𝑑𝑓 (𝑥), which we denote 𝑓 (𝑔 |·), is
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measurable. Given 𝑓 : 𝑋 → Δ(𝑌 ) and 𝑔 : 𝑌 → Δ(𝑍) stochastic, we define 𝑔 ◦ 𝑓 : 𝑋 → Δ(𝑍)
by 𝑔 ◦ 𝑓 (𝐸 |𝑥) =

∫
𝑔(𝐸 |·) 𝑑𝑓 (𝑥). We can prove easily that it’s stochastic, and ◦ is associative:

(ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ). Also, if {𝑥} is measurable for every 𝑥 ∈ 𝑋 , then 𝑋 has an identity
id𝑋 : 𝑋 → Δ(𝑋) given by id𝑋 (𝑥) = 𝛿𝑥 , which is stochastic. Thus the measurable spaces with
measurable singletons form a category whose morphisms are the stochastic maps. We can view
measures ` ∈ Δ(𝑋) as stochastic maps ` : • → Δ(𝑋) from a one-point space, so 𝑓 : 𝑋 → Δ(𝑌 )
stochastic induces 𝑓 ◦ ` ∈ Δ(𝑌 ).

Given a prior `0 ∈ Δ(Ω) and a signal 𝜎 : Ω → Δ(𝑆) (stochastic), we can define the ex
ante measure 𝜎0 = 𝜎 ◦ `0. We say that the stochastic map 𝛽 : 𝑆 → Δ(Ω) is a posterior map
if
∫
𝐹
𝛽(𝐸 |·) 𝑑𝜎0 =

∫
𝐸
𝜎(𝐹 |·) 𝑑`0 for all 𝐸 ∈ ΣΩ, 𝐹 ∈ Σ𝑆, or equivalently

∫
𝑓 𝛽(𝑔 |·) 𝑑𝜎0 =∫

𝜎( 𝑓 |·)𝑔 𝑑`0 for all 𝑓 ∈ 𝐵(𝑆), 𝑔 ∈ 𝐵(Ω). I represent this with the following diagram.

• `0 //

𝜎0 ��

Ω

𝜎
��
𝑆

𝛽

ll

Theorem 3 (Existence of posteriors). If Ω is separable metrizable, (𝑆, Σ𝑆) is measurable,
`0 ∈ Δ(Ω) is regular, and 𝜎 : Ω → Δ(𝑆) is stochastic, then there is a posterior map 𝛽, and if
𝛽, 𝛽′ are posterior maps then 𝛽 = 𝛽′ 𝜎0-a.e.

Proof.2 Assume first that Ω is compact. Let 𝐷 ⊂ 𝐶 (Ω) be dense, numerable, containing
𝑞1Ω for 𝑞 ∈ ℚ, and closed under addition (it exists by Aliprantis and Border, 2006, 9.14).
Every 𝑓 ∈ 𝐷 induces a measure a 𝑓 (𝐹) =

∫
𝑓 𝜎(𝐹 |·) 𝑑`0 for 𝐹 ∈ Σ𝑆 such that a 𝑓 ≪ 𝜎0, so let

𝛽( 𝑓 |·) =
𝑑a 𝑓
𝑑𝜎0

, the Radon-Nikodym derivative. We have that 𝛽(·|𝑠) is additive and monotone
(𝛽( 𝑓 |𝑠) ⩾ 𝛽(𝑔 |𝑠) if 𝑓 ⩾ 𝑔), and 𝛽(𝑞1Ω |𝑠) = 𝑞 for all 𝑠 ∈ 𝑆 ∈ Σ𝑆, where 𝜎0(𝑆) = 1, and we
get |𝛽( 𝑓 |·) − 𝛽(𝑔 |·) | ⩽ ∥ 𝑓 − 𝑔∥∞ in 𝑆 (we have 𝑓 ⩽ 𝑔 + 𝑞1Ω for any 𝑞 ∈ ℚ, 𝑞 ⩾ ∥ 𝑓 − 𝑔∥∞,
so it follows by additivity and monotonicity). For each 𝑠 ∈ 𝑆 and 𝑓 ∈ 𝐶 (Ω) we define
𝛽( 𝑓 |𝑠) = lim

𝑛
𝛽( 𝑓𝑛 |𝑠) for any 𝑓𝑛 → 𝑓 with 𝑓𝑛 ∈ 𝐷, clearly well-defined; clearly 𝛽(·|𝑠) is linear

and continuous, hence by Riesz it is a measure. For 𝑠 ∉ 𝑆 we set 𝛽(𝑠) constant. Let F be the set
of 𝑓 ∈ 𝐵(Ω) such that 𝛽( 𝑓 |·) is measurable; it is a vector space closed by pointwise dominated
limits that contains 𝐷, hence it contains 𝐶 (Ω), and therefore every 𝑓 ∈ 𝐵(Ω). We have that∫
𝐹
𝛽( 𝑓 |·) 𝑑𝜎0 =

∫
𝑓 𝜎(𝐹 |·) 𝑑`0 for every 𝐹 ∈ Σ𝑆, 𝑓 ∈ 𝐷, hence it’s true for every 𝑓 ∈ 𝐵(Ω),

and therefore 𝛽 is a posterior distribution, as desired. If 𝛽′ is another posterior, for every 𝑓 ∈ 𝐷
it agrees 𝜎0-a.e. with 𝛽, so 𝛽 = 𝛽′ 𝜎0-a.e.

Now, let Ω be separable. By regularity there is 𝐾 =
⋃
𝑛∈ℕ 𝐾𝑛 with 𝐾𝑛 compact, `0(𝐾) = 1.

We embed Ω in a compact metric space Ω̃ (see the proof of Aliprantis and Border, 2006, 15.12).
Let 𝑠 ∈ 𝑆. We define ˜̀0 ∈ Δ(Ω̃) by ˜̀0(𝐸) = `0(𝐸 ∩ 𝐾) and �̃� : Ω̃ → Δ(𝑆) by �̃�(𝑥) = 𝜎(𝑥)
if 𝑥 ∈ 𝐾 , and 𝛿𝑠 otherwise; �̃� is stochastic since 𝐾 ∈ BΩ̃. We apply the result and obtain
𝛽 : 𝑆 → Δ(Ω̃) measurable. Let 𝑆 = {𝑠 ∈ 𝑆 : 𝛽(𝐾 |𝑠) = 1}, 𝜔 ∈ 𝐾 , and 𝛽 : 𝑆 → Δ(Ω) be given

2I adapt the proof in Dellacherie and Meyer (1978, p. 78), which establishes a very similar result.
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by 𝛽(𝐸 |𝑠) = 𝛽(𝐸 ∩𝐾 |𝑠) if 𝑠 ∈ 𝑆 and 𝛽(𝑠) = 𝛿𝜔 otherwise. It’s easy to see that �̃�0(𝑆) = 1, and 𝛽
is a posterior of 𝜎. For uniqueness, if 𝛽′ is another posterior map let 𝑆 = {𝑠 ∈ 𝑆 : 𝛽′(𝐾 |𝑠) = 1};
we have 𝜎0(𝑆) = 1, so define 𝛽′ : 𝑆 → Δ(Ω̃) by 𝛽′(𝐸 |𝑠) = 𝛽(𝐾 ∩ 𝐸 |𝑠) if 𝑠 ∈ 𝑆, and 𝛽′(𝑠) = 𝛿𝜔
otherwise. We see that 𝛽′ is another posterior map of �̃�, so 𝛽 = 𝛽′ holds �̃�0-a.e., and 𝛽 = 𝛽′

holds 𝜎0-a.e. ■

The following is immediate but worth recording.

Proposition 1. If 𝛽 : 𝑆 → Δ(Ω) is a posterior for 𝜎 : Ω → Δ(𝑆) over prior `0 ∈ Δ(Ω)
then for every 𝑓 ∈ 𝐵(𝑆×Ω) we have

∬
𝑓 (𝑠, 𝜔) 𝑑𝜎(𝑠 |𝜔) 𝑑`0(𝜔) =

∬
𝑓 (𝑠, 𝜔) 𝑑𝛽(𝜔|𝑠) 𝑑𝜎0(𝑠).

Proof. Let F be the set of functions that satisfy the conclusion. It is a vector space
and it’s closed under pointwise dominated limits. The fact that 𝛽 is a posterior implies that
𝑓 𝑔 ∈ F for every 𝑓 ∈ 𝐵(𝑆), 𝑔 ∈ 𝐵(Ω). Therefore 1𝐸×𝐹 ∈ F for every 𝐸 ∈ Σ𝑆, 𝐹 ∈ ΣΩ, so
A = {𝐸 ∈ Σ𝑆 ⊗ΣΩ : 1𝐸 ∈ F} is a monotone class that includes an algebra including 𝐸 ×𝐹 with
𝐸 ∈ Σ𝑆, 𝐹 ∈ ΣΩ, hence A = Σ𝑆 ⊗ ΣΩ, and every simple function

∑𝑛
𝑖=1 𝑐𝑖1𝐸𝑖

with 𝐸𝑖 ∈ Σ𝑆 ⊗ ΣΩ

is in F. We are done, since
∬

𝑓 (𝑠, 𝜔) 𝑑𝜎(𝑠 |𝜔) 𝑑`0(𝜔) = sup{
∬
𝑔(𝑠, 𝜔) 𝑑𝜎(𝑠 |𝜔) 𝑑`0(𝜔) :

0 ⩽ 𝑔 ⩽ 𝑓 simple} for 𝑓 ⩾ 0, and similarly for the other one. ■

Definition 1 (Distribution of posteriors). Given a regular prior `0 ∈ Δ(Ω) and a signal
𝜎 : Ω → Δ(𝑆), a posterior map 𝛽𝜎 of 𝜎 induces a measure 𝑝𝜎 ∈ Δ(Δ(Ω)), the distribution of
posteriors, given by 𝑝𝜎 (𝐸) = 𝜎0(𝛽−1

𝜎 (𝐸)) for 𝐸 ∈ BΔ(Ω) . Notice that it is independent of the
choice of 𝛽𝜎.

Proposition 2. Let Ω be separable metrizable, `0 ∈ Δ(Ω) regular, and 𝜎 : Ω → Δ(𝑆) a
signal. Then 𝑝𝜎 is regular.

Proof. Using the construction and notation of the proof of Theorem 3, we have 𝑝 ∈ Δ(Ω̃)
defined by 𝑝(𝐸) = �̃�0(𝛽−1(𝐸)) for 𝐸 ∈ BΔ(Ω̃) is regular, since every finite Borel measure on a
compact metric space is regular (Aliprantis and Border, 2006, 12.7). Now 𝑝(Δ(𝐾)) = 1 since
𝛽(𝑆) ⊂ Δ(𝐾), so 𝑝(𝐸) = 𝑝(𝐸 ∩ Δ(𝐾)) if 𝐸 ∈ BΔ(Ω) , and 𝑝 is regular as well. ■

We have
∫
`(𝐸) 𝑑𝑝𝜎 (`) = `0(𝐸) for every 𝐸 ∈ BΩ, i.e., the mean of the posteriors

is the prior, since
∫
`(𝐸) 𝑑𝑝𝜎 (`) =

∫
𝛽𝜎 (𝐸 |·) 𝑑𝜎0 =

∫
𝐸
𝜎(Ω|·) 𝑑`0 = `0(𝐸). Conversely,

if 𝑝 ∈ Δ(Δ(Ω)) regular is such that
∫
` 𝑑𝑝(`) = `0, define 𝑆 = Δ(Ω), 𝛽 : 𝑆 → Δ(Ω)

by 𝛽(`) = `, and let 𝜎 : Ω → Δ(𝑆) be a posterior map of 𝛽 with prior 𝑝 (it exists by
Theorem 3). We have 𝛽0 =

∫
𝛽(·|`) 𝑑𝑝(`) =

∫
` 𝑑𝑝(`) = `0, so the definition of 𝜎 implies∫

𝜎(𝐸 |·) 𝑑`0 =
∫
𝐸
𝛽(Ω|·) 𝑑𝑝 = 𝑝(𝐸), and we get 𝜎0(𝐸) =

∫
𝜎(𝐸 |·) 𝑑`0 = 𝑝(𝐸) and 𝑝𝜎 (𝐸) =

𝜎0(𝛽−1(𝐸)) = 𝜎0(𝐸) = 𝑝(𝐸). In other words, any distribution of posteriors 𝑝 ∈ Δ(Δ(Ω)) such
that

∫
` 𝑑𝑝(`) = `0 is in fact the distribution of posteriors of some signal. Let’s record this.

Proposition 3. Let Ω be separable metrizable, `0 ∈ Δ(Ω) and 𝑝 ∈ Δ(Δ(Ω)) regular. There
is a signal 𝜎 : Ω → Δ(𝑆) such that 𝑝 = 𝑝𝜎 iff

∫
` 𝑑𝑝(`) = `0.
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In the reasoning above, note that we can induce the posteriors’ distribution 𝑝𝜎 using a signal
�̃� : Ω → Δ(Δ(Ω)) such that its posterior map is ` ↦→ `, i.e., its realizations are their own
posteriors. This motivates the following definition.

Definition 2 (Direct signals). A signal 𝜎 : Ω → Δ(Δ(Ω)) is direct with respect to `0 ∈
Δ(Ω) if ` ↦→ ` is a posterior map with prior `0.

We want to formalize the intuition that any signal is “informationally equivalent” (in some
sense) to a direct signal.

Definition 3 (Blackwell informativeness). Given two signals 𝜎 : Ω → Δ(𝑆) and 𝜎′ : Ω →
Δ(𝑆′), we say that 𝜎 is Blackwell-more informative than 𝜎′ relative to `0, 𝜎 ⩾`0

𝐵
𝜎′, if there

is 𝜏 : 𝑆 → Δ(𝑆′) stochastic such that
∫
𝜎′( 𝑓 |·)𝑔 𝑑`0 =

∫
𝜏 ◦ 𝜎( 𝑓 |·)𝑔 𝑑`0 holds for every

𝑓 ∈ 𝐵(𝑆′), 𝑔 ∈ 𝐵(Ω). It’s easy to see that this relation is symmetric and transitive. We say that
𝜎 ∼`0

𝐵
𝜎′, i.e., 𝜎 and 𝜎′ are equally informative, if 𝜎 ⩾`0

𝐵
𝜎′ and 𝜎′ ⩾`0

𝐵
𝜎.

Proposition 4. If 𝑆′ is separable metrizable then 𝜎 ⩾`0
𝐵
𝜎′ iff 𝜎′ = 𝜏 ◦ 𝜎 holds `0-a.e.

Proof. Following the proof of Aliprantis and Border (2006, 15.12), there is a countable set
𝐷 ⊂ 𝐶𝑏 (𝑆′) such that `, `′ ∈ Δ(𝑆′) are equal iff `( 𝑓 ) = `′( 𝑓 ) for every 𝑓 ∈ 𝐷. For each
𝑓 ∈ 𝐷, 𝜎 ⩾`0

𝐵
𝜎′ implies that 𝜎′( 𝑓 |·) = 𝜏 ◦ 𝜎( 𝑓 |·) holds `0-a.e., hence taking the intersection

of those sets, the equation holds for every 𝑓 ∈ 𝐷 in a `0-full measure set, and in that set we get
that 𝜎′ = 𝜏 ◦ 𝜎. ■

Proposition 5. Let Ω, 𝑆 be separable metrizable, `0 ∈ Δ(Ω) regular, 𝜎 : Ω → Δ(𝑆)
stochastic, and 𝜎0 = 𝜎 ◦ `0 regular. There is a �̃� : Ω → Δ(Δ(Ω)) direct with 𝜎 ∼`0

𝐵
�̃�, and

𝑝�̃� = 𝑝𝜎.

Proof. Given 𝜎 : Ω → Δ(𝑆) we can define a stochastic map 𝛽𝜎 : 𝑆 → Δ(Δ(Ω)) by
𝛽𝜎 (𝑠) = 𝛿𝛽𝜎 that maps each signal realization to the posterior it induces. We can define a
new signal �̃� : Ω → Δ(Δ(Ω)) by �̃� = 𝛽𝜎 ◦ 𝜎, so 𝑝𝜎 = �̃� ◦ `0. Let’s verify that �̃� is
direct, i.e., the map 𝛽�̃� : ` ↦→ ` is a posterior for �̃�. To prove this, we have to verify that∫
𝑓 𝛽�̃� (𝑔 |·) 𝑑𝑝𝜎 =

∫
𝑔�̃�( 𝑓 |·) 𝑑`0 for any 𝑓 ∈ 𝐵(Δ(Ω)), 𝑔 ∈ 𝐵(Ω). Now,∫

𝑓 𝛽�̃� (𝑔 |·) 𝑑𝑝𝜎 =

∬
𝑓 (`)`(𝑔) 𝑑�̃�(` |·) 𝑑`0 =

∭
𝑓 (`)`(𝑔) 𝑑𝛽𝜎 (` |𝑠) 𝑑𝜎(𝑠 |·) 𝑑`0

=

∫
𝑓 (𝛽𝜎 (𝑠))𝛽𝜎 (𝑔 |𝑠) 𝑑𝜎0(𝑠) =

∫
𝜎( 𝑓 ◦ 𝛽𝜎 |·)𝑔 𝑑`0

=

∬
𝑓 (𝛽𝜎 (𝑠)) 𝑑𝜎(𝑠 |·)𝑔 𝑑`0 =

∬
𝛽𝜎 ( 𝑓 |𝑠) 𝑑𝜎(𝑠 |·)𝑔 𝑑`0

=

∫
�̃�( 𝑓 |·)𝑔 𝑑`0,

as desired.
Clearly 𝜎 ⩾𝐵 �̃�. We have to prove that �̃� ⩾`0

𝐵
𝜎. Let 𝜏 be the posterior of 𝛽𝜎 over the prior
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𝜎0, which exists by Theorem 3 since 𝜎0 is assumed regular. See the following diagram.

• `0 //

𝑝𝜎 --

𝜎0

""
Ω

𝜎 //

�̃� ""

𝑆

𝛽𝜎
��

Δ(Ω)
𝜏

mm

We have to verify that
∫
𝜏 ◦ �̃�( 𝑓 |·)𝑔 𝑑`0 =

∫
𝜎( 𝑓 |·)𝑔 𝑑`0 for any 𝑓 ∈ 𝐵(𝑆), 𝑔 ∈ 𝐵(Ω). To

start, let’s write down the definition of 𝜏. This is that
∫
�̂�𝜏( 𝑓 |·) 𝑑𝑝𝜎 =

∫
𝑓 𝛽𝜎 (�̂� |·) 𝑑𝜎0 for any

𝑓 ∈ 𝐵(𝑆), �̂� ∈ 𝐵(Δ(Ω)). We apply it to �̂�(`) = `(𝑔), which is in 𝐵(Δ(Ω)) by Aliprantis and
Border (2006, 15.13). The LHS is∫

`(𝑔)𝜏( 𝑓 |`) 𝑑𝑝𝜎 (`) =
∬

`(𝑔)𝜏( 𝑓 |`) 𝑑�̃�(` |·) 𝑑`0 =

∭
`(𝑔)𝜏( 𝑓 |`) 𝑑𝛽𝜎 (` |𝑠) 𝑑𝜎(𝑠 |·) 𝑑`0

=

∫
𝛽𝜎 (𝑔 |𝑠)𝜏( 𝑓 |𝛽𝜎 (𝑠)) 𝑑𝜎0(𝑠) =

∫
𝑔𝜎(𝜏( 𝑓 |𝛽𝜎 (·)) |·) 𝑑`0

=

∫
𝑔

∫
𝜏( 𝑓 |𝛽𝜎 (𝑠)) 𝑑𝜎(𝑠 |·) 𝑑`0 =

∫
𝑔

∬
𝜏( 𝑓 |·) 𝑑𝛽𝜎 (𝑠) 𝑑𝜎(𝑠 |·) 𝑑`0

=

∫
𝑔𝜏 ◦ �̃�( 𝑓 |·) 𝑑`0

and the RHS is
∫
𝑓 𝛽𝜎 (�̃� |·) 𝑑𝜎0 =

∫
𝑓 𝛽𝜎 (𝑔 |·) 𝑑𝜎0 =

∫
𝜎( 𝑓 |·)𝑔 𝑑`0, so we get that

∫
𝜏 ◦

�̃�( 𝑓 |·)𝑔 𝑑`0 =
∫
𝜎( 𝑓 |·)𝑔 𝑑`0, hence �̃� ⩾`0

𝐵
𝜎, as desired. ■

Hence if 𝜎 : Ω → Δ(𝑆) and 𝜎′ : Ω → Δ(𝑆′) are two signals with 𝑆, 𝑆′ separable metrizable
such that their ex ante measures 𝜎0 and 𝜎′

0 are regular, we have that 𝜎 ⩾`0
𝐵
𝜎′ iff �̃� ⩾`0

𝐵
�̃�′,

where �̃�, �̃�′ : Ω → Δ(Δ(Ω)) are direct.
I will use a version of Jensen’s inequality. First, I need the following.

Definition 4 (𝐶ℓ (Δ(𝑋))). If 𝑋 is metrizable,𝐶ℓ (Δ(𝑋)) is the set of functions 𝑓 ∈ 𝐵(Δ(𝑋))
that are lower-semicontinuous, i.e., the epigraph {(`, _) ∈ Δ(𝑋) × ℝ : 𝑓 (`) ⩽ _} is closed,
when Δ(𝑋) has the minimal topology that makes �̂�(`) = `(𝑔) continuous for every 𝑔 ∈ 𝐵(𝑋).

Proposition 6 (Jensen). Let 𝑋 be metrizable, 𝑝 ∈ Δ(Δ(𝑋)), 𝑝 ∈ Δ(𝑋) such that 𝑝( 𝑓 ) =∫
`( 𝑓 ) 𝑑𝑝(`) for every 𝑓 ∈ 𝐵(𝑋), and 𝑓 ∈ 𝐶ℓ (Δ(𝑋)) convex. Then

∫
𝑓 𝑑𝑝 ⩾ 𝑓 (𝑝).

Proof.3 The epigraph 𝐶 = {(`, _) ∈ Δ(𝑋) × ℝ : 𝑓 (`) ⩽ _} is convex and closed in
M(𝑋) ×ℝ with the topology induced by {�̂�}𝑔∈𝐵(𝑋) . If (𝑝,

∫
𝑓 𝑑𝑝) ∉ 𝐶, by Hahn-Banach there

is 𝜙 : M(𝑋) × ℝ → ℝ linear continuous that separates them. Now 𝜙(`, _) = �̂�(`) + 𝑎_ for
𝑔 ∈ 𝐵(𝑋), 𝑎 ∈ ℝ. Hence there is 𝑡 ∈ ℝ such that �̂�(`) + 𝑎 𝑓 (`) > 𝑡 > �̂�(𝑝) + 𝑎

∫
𝑓 𝑑𝑝 for every

` ∈ Δ(𝑋). Integrating we get
∫
(�̂�(`) + 𝑎 𝑓 (`)) 𝑑𝑝(`) = �̂�(𝑝) + 𝑎

∫
𝑓 𝑑𝑝 ⩾ 𝑡, absurd. Hence∫

𝑓 𝑑𝑝 ⩾ 𝑓 (𝑝), as claimed. ■

We are ready to prove (1) ⇒ (2) ⇒ (3) in Theorem 1. First, a definition.

3This is folklore, but it’s easier to include a proof than to find a proof of this exact version in the literature.
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Definition 5 (Mean-preserving spread). A stochastic map 𝜏 : Δ(Ω) → Δ(Δ(Ω)) is a mean-
preserving spread iff for every ` ∈ Δ(Ω) we have that

∫
a 𝑑𝜏(a |`) = `, i.e.,

∫
a( 𝑓 ) 𝑑𝜏(a |`) =

`( 𝑓 ) for every 𝑓 ∈ 𝐵(Δ(Ω)).

Proposition 7. Let Ω, 𝑆, 𝑆′ be separable metrizable, `0 ∈ Δ(Ω) regular, 𝜎 : Ω → Δ(𝑆),
𝜎′ : Ω → Δ(𝑆′) signals with𝜎0, 𝜎

′
0 regular. If𝜎 ⩾`0

𝐵
𝜎′ then there is a mean-preserving spread

𝛾 : Δ(Ω) → Δ(Δ(Ω)) such that 𝑝𝜎 = 𝛾 ◦ 𝑝𝜎′. If the latter is the case, then
∫
𝑓 𝑑𝑝𝜎 ⩾

∫
𝑓 𝑑𝑝𝜎′

for every 𝑓 ∈ 𝐶ℓ (Δ(Ω)) convex.

Proof. By Proposition 5 we can assume that 𝜎, 𝜎′ : Ω → Δ(Δ(Ω)) are direct. We have
𝜎 ⩾`0

𝐵
𝜎′, so 𝜎′ = 𝜏 ◦ 𝜎 holds `0-a.e., where 𝜏 : Δ(Ω) → Δ(Δ(Ω)) is stochastic. Let

𝛾 : Δ(Ω) → Δ(Δ(Ω)) be the posterior map of 𝜏 with prior 𝑝𝜎, which exists by Proposition 2
and Theorem 3. This means that

∫
𝑓 𝛾(𝑔 |·) 𝑑𝑝𝜎′ =

∫
𝜏( 𝑓 |·)𝑔 𝑑𝑝𝜎 for every 𝑓 , 𝑔 ∈ 𝐵(Δ(Ω)).

See the diagram.

• `0 //

𝑝𝜎′ --

𝑝𝜎

$$
Ω

𝜎 //

𝜎′
!!

Δ(Ω)
𝜏

��
Δ(Ω)

𝛾

ff

We note that 𝑝𝜎 = 𝛾◦𝑝𝜎′ by taking 𝑓 = 1Δ(Ω) in the equation above. Moreover,
∫
a 𝑑𝛾(a |`) = `

holds for 𝑝𝜎′-almost all `. To see this, take any 𝑓 ∈ 𝐵(Δ(Ω)), 𝑔 ∈ 𝐵(Ω), and note that∫
𝑓

∫
a(𝑔) 𝑑𝛾(a |·) 𝑑𝑝𝜎′ (`) =

∫
𝑓 𝛾(a ↦→ a(𝑔) |·) 𝑑𝑝𝜎′ =

∫
𝜏( 𝑓 |`)`(𝑔) 𝑑𝑝𝜎 (`)

=

∫
𝑔𝜎(𝜏( 𝑓 |·) |·) 𝑑`0,

and
∫
𝑓 (`)`(𝑔) 𝑑𝑝𝜎′ (`) =

∫
𝜎′( 𝑓 |·)𝑔 𝑑`0 =

∫
𝑔
∫
𝜏( 𝑓 |`) 𝑑𝜎(` |·) 𝑑`0 =

∫
𝑔𝜎(𝜏( 𝑓 |·) |·) 𝑑`0,

so they are equal. Noting that the definition of 𝛾 and the equation 𝑝𝜎 = 𝛾 ◦ 𝑝𝜎′ still hold if
we change 𝛾 in a set of 𝑝𝜎′ measure zero, we can set 𝛾(`) = 𝛿` for ` in the set where∫
a 𝑑𝛾(a |`) = ` doesn’t hold, so it holds everywhere. Therefore 𝛾 is a mean-preserving

spread, as desired.
Now, let 𝑓 ∈ 𝐶ℓ (Δ(Ω)) be convex, and 𝑝𝜎 = 𝛾 ◦ 𝑝𝜎′ where 𝛾 is a mean-preserving spread.

We have∫
𝑓 𝑑𝑝𝜎 =

∬
𝑓 (a) 𝑑𝛾(a |·) 𝑑𝑝𝜎′ ⩾

∫
𝑓

(∫
𝑣 𝑑𝛾(a |·)

)
𝑑𝑝𝜎′ =

∫
𝑓 𝑑𝑝𝜎′

by Proposition 6. ■

B. Decision problems and Blackwell’s theorem

Let Ω be separable metrizable and `0 ∈ Δ(Ω). A decision problem is a pair (𝐴, 𝑢) where
𝐴 compact metrizable is a set of actions and 𝑢 : 𝐴 × Ω → ℝ bounded, the payoff function, is a
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Carathéodory function, i.e., 𝑢(·, 𝜔) is continuous for each 𝜔 ∈ Ω and 𝑢(𝑎, ·) is measurable for
each 𝑎 ∈ 𝐴. (This implies 𝑢 ∈ 𝐵(𝐴 × Ω) by Aliprantis and Border, 2006, 4.51.) A strategy is
a stochastic map 𝛼 : Ω → Δ(𝐴), and let A be the set of strategies. We can define the expected
payoff of a strategy as𝑈 (𝛼) =

∬
𝑢(𝑎, 𝜔) 𝑑𝛼(𝑎 |𝜔) 𝑑`0(𝜔). If an agent observes the realization

of a signal 𝜎 : Ω → Δ(𝑆), she can choose an action �̃� : 𝑆 → Δ(𝐴) that induces a strategy
𝛼 = �̃� ◦ 𝜎, so let A𝜎 = {�̃� ◦ 𝜎 | �̃� : 𝑆 → Δ(𝐴) stochastic} be the set of strategies available
given signal 𝜎, and let 𝑉 (𝜎) = sup{𝑈 (𝛼) : 𝛼 ∈ A𝜎} be the value of signal 𝜎. We say that 𝜎
is more valuable than 𝜎′, 𝜎 ⩾`0

𝐷
𝜎′, if 𝑉 (𝜎) ⩾ 𝑉 (𝜎′) for every decision problem (𝐴, 𝑢). It’s a

symmetric and transitive relation.

Proposition 8. Let Ω be separable metrizable, `0 ∈ Δ(Ω), and 𝜎 : Ω → Δ(𝑆), 𝜎′ : Ω →
Δ(𝑆′) signals. Then 𝜎 ⩾`0

𝐵
𝜎′ implies 𝜎 ⩾`0

𝐷
𝜎′.

Proof. Assume that 𝜎 ⩾`0
𝐵
𝜎′, so let 𝜏 : 𝑆 → Δ(𝑆′) stochastic such that

∫
𝜎′( 𝑓 |·)𝑔 𝑑`0 =∫

𝜏 ◦ 𝜎( 𝑓 |·)𝑔 𝑑`0 for each 𝑓 ∈ 𝐵(𝑆′), 𝑔 ∈ 𝐵(Ω). Using the same argument as in Propo-
sition 1 we obtain that

∬
𝑓 (𝑠′, 𝜔) 𝑑𝜎′(𝑠′|𝜔) 𝑑`0(𝜔) =

∬
𝑓 (𝑠′, 𝜔) 𝑑𝜏 ◦ 𝜎(𝑠′|𝜔) 𝑑`0(𝜔) for

every 𝑓 ∈ 𝐵(𝑆′ × Ω). Now let (𝐴, 𝑢) be a decision problem. We want to show that
𝑉 (𝜎) ⩾ 𝑉 (𝜎′). It’s enough to show that {𝑈 (𝛼) : 𝛼 ∈ A𝜎′} ⊂ {𝑈 (𝛼) : 𝛼 ∈ A𝜎}. So let
𝛼 : 𝑆′ → Δ(𝐴) be stochastic, and let 𝛼′ = 𝛼 ◦ 𝜏. Define 𝑓 (𝑠′, 𝜔) = 𝛼(𝑢(·, 𝜔) |𝑠′), which is in
𝐵(𝑆′ × Ω). Now

∫
𝑢(𝑎, 𝜔) 𝑑𝛼 ◦ 𝜎′(𝑎 |𝜔) =

∫
𝛼(𝑢(·, 𝜔) |𝑠′) 𝑑𝜎′(𝑠′|𝜔) =

∫
𝑓 (𝑠′, 𝜔) 𝑑𝜎′(𝑠′|𝜔),

and
∫
𝑢(𝑎, 𝜔) 𝑑𝛼′ ◦ 𝜎(𝑠 |𝜔) 𝑑`0(𝜔) =

∬
𝑓 (𝑠′, 𝜔) 𝑑𝜏 ◦ 𝜎(𝑠′|𝜔) 𝑑`0(𝜔). Hence 𝑈 (𝛼′ ◦ 𝜎) =

𝑈 (𝛼 ◦ 𝜎′), and we are done. ■

In fact, we can prove something stronger.

Proposition 9. Let Ω, 𝑆, 𝑆′ separable metrizable, `0 ∈ Δ(Ω) regular, 𝜎 : Ω → Δ(𝑆),
𝜎′ : Ω → Δ(𝑆′) signals with 𝜎0, 𝜎

′
0 regular. Then if

∫
𝑓 𝑑𝑝𝜎 ⩾

∫
𝑓 𝑑𝑝𝜎′ for all 𝑓 ∈ 𝐶ℓ (Δ(Ω))

convex then 𝜎 ⩾`0
𝐷
𝜎′.

Proof. Using Proposition 5 and the above we can assume that 𝜎, 𝜎′ : Ω → Δ(Δ(Ω)) are
direct. Now using Proposition 1 we have

𝑉 (𝜎) = sup
{∬

𝑢(𝛼(`), 𝜔) 𝑑𝜎(` |𝜔) 𝑑`0(𝜔) | 𝛼 : Δ(Ω) → Δ(𝐴) stochastic
}

= sup
{∬

𝑢(𝛼(`), 𝜔) 𝑑` 𝑑𝑝𝜎 (`) | 𝛼 : Δ(Ω) → Δ(𝐴) stochastic
}
.

By the Measurable Maximum Theorem (Aliprantis and Border, 2006, Theorem 18.19) applied to
�̃�(𝑎, `) =

∫
𝑢(𝑎, ·) 𝑑`, we have that there is 𝛼 : Δ(Ω) → Δ(𝐴) measurable such that 𝛼(`) max-

imizes
∫
𝑢(𝑎, ·) 𝑑` for each `, hence 𝑉 (𝜎) =

∫
𝑓 𝑑𝑝𝜎, where 𝑓 (`) = max𝑎∈Δ(𝐴)

∫
𝑢(𝑎, ·) 𝑑`.

Clearly 𝑓 is convex, bounded and measurable, and 𝑓 ∈ 𝐶ℓ (Δ(Ω)), since the epigraph is⋂
𝑎∈Δ(𝐴){(`, _) ∈ Δ(Ω) ×ℝ :

∫
𝑢(𝑎, ·) 𝑑` ⩽ _}, and each of those sets is closed in the relevant

topology since 𝑢(𝑎, ·) ∈ 𝐵(Ω), so we obtain 𝑉 (𝜎) ⩾ 𝑉 (𝜎′). ■

We are ready to prove the main theorem.
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Theorem 1 (Blackwell). Let Ω, 𝑆, 𝑆′ be separable metrizable, `0 ∈ Δ(Ω), 𝜎 : Ω → Δ(𝑆),
𝜎′ : Ω → Δ(𝑆′) signals with `0, 𝜎0 = 𝜎 ◦ `0 and 𝜎′

0 = 𝜎′ ◦ `0 regular.4 Then the following
are equivalent:

(1) 𝜎 is more informative than 𝜎′ relative to `0,
(2) 𝑝𝜎 = 𝜏 ◦ 𝑝𝜎′ for a mean-preserving spread 𝜏,
(3)

∫
𝑓 𝑑𝑝𝜎 ⩾

∫
𝑓 𝑑𝑝𝜎′ for every 𝑓 ∈ 𝐶ℓ (Δ(Ω)) convex,

(4) 𝜎 is more valuable than 𝜎′ relative to `0.

Proof. We proved (1) ⇒ (2) ⇒ (3) ⇒ (4) in Propositions 7 and 9, so we have to prove
(4) ⇒ (1). Suppose that (1) doesn’t hold, so assume that 𝜎 : Ω → Δ(𝑆), 𝛼 : Ω → Δ(𝐴) are
stochastic, and 𝜎 is not more informative than 𝛼 relative to `0. This means that there is no
�̃� : 𝑆 → Δ(𝐴) stochastic such that 𝛼 = �̃� ◦ 𝜎 `0-a.e. We want to prove that (4) doesn’t hold.
Let’s assume first that 𝐴 is compact.

Let 𝑀𝑆 be the vector space of measurable bounded functions 𝑎 : 𝑆 → M(𝐴) with the
minimal topology that makes the linear functions 𝐿 𝑓 ,𝑔 (𝑎) =

∫
𝑎( 𝑓 |·)𝑔 𝑑𝜎0 continuous, where

𝑓 ∈ 𝐶 (𝐴) and 𝑔 ∈ 𝐵(𝑆). The set 𝑀∗
𝑆

of linear continuous functions 𝜙 : 𝑀𝑆 → ℝ is the vector
space generated by {𝐿 𝑓 ,𝑔 : 𝑓 ∈ 𝐶 (𝐴), 𝑔 ∈ 𝐵(𝑆)}. Let 𝐴𝑆 be the subset of 𝑀𝑆 composed by
𝑎 : 𝑆 → Δ(𝐴). I claim that it is compact. Let 𝐼 = 𝐶 (𝐴) × 𝐵(𝑆) and

] : 𝐴𝑆 → 𝐾 =
∏

( 𝑓 ,𝑔)∈𝐼
[−∥ 𝑓 ∥∞∥𝑔∥∞, ∥ 𝑓 ∥∞∥𝑔∥∞]

given by ](𝑎) = (
∫
𝑎( 𝑓 |·)𝑔 𝑑𝜎0)( 𝑓 ,𝑔)∈𝐼 . Let 𝑎𝛼 ∈ 𝐴𝑆 be a net. By Tychonoff, 𝐾 is compact,

hence ](𝑎𝛼) has a convergent subnet ](𝑎𝛼𝛽 ) → �̄� ∈ 𝐾 . We proceed as in the proof of
Theorem 3 and construct 𝑎 : 𝑆 → Δ(𝐴) measurable such that

∫
𝑎( 𝑓 |·)𝑔 𝑑𝜎0 = �̄�( 𝑓 , 𝑔) for

all 𝑓 ∈ 𝐶 (𝐴), 𝑔 ∈ 𝐵(𝑆). Let 𝐷 ⊂ 𝐶 (𝐴) be dense, numerable, containing 𝑞1𝐴 for every
𝑞 ∈ ℚ, and closed under addition. Every 𝑓 ∈ 𝐷 induces a function a 𝑓 : 𝐶 (𝑆) → ℝ given
by a 𝑓 (𝑔) = �̄�( 𝑓 , 𝑔); given that ](𝑎𝛼𝛽 ) → �̄�, we have that a 𝑓 is linear and continuous, hence
it’s a measure, and we see that a 𝑓 ≪ 𝜎0. Hence we can define 𝑎( 𝑓 |·) =

𝑑a 𝑓
𝑑𝜎0

. In a 𝜎0-
full measure set 𝑆 we have that 𝑎(·|𝑠) is additive, monotone, and 𝑎(𝑞1𝐴 |𝑠) = 𝑞 for every
𝑞 ∈ ℚ, hence |𝑎( 𝑓 |·) − 𝑎(𝑔 |·) | ⩽ ∥ 𝑓 − 𝑔∥∞ in 𝑆. For each 𝑠 ∈ 𝑆 and 𝑓 ∈ 𝐶 (𝐴) we define
𝑎( 𝑓 |𝑠) = lim

𝑛
𝑎( 𝑓𝑛 |𝑠) for any 𝑓𝑛 → 𝑓 with 𝑓𝑛 ∈ 𝐷; it’s well defined and 𝑎(·|𝑠) is linear

continuous, hence 𝑎(·|𝑠) ∈ Δ(𝐴) by Riesz. We extent 𝑎 to 𝑆 by setting 𝑎(·|𝑠) ∈ Δ(𝐴) constant
(arbitrary) for 𝑠 ∈ 𝑆𝑐. Let F = { 𝑓 ∈ 𝐵(𝐴) : 𝑎( 𝑓 |·) is measurable}; we have 𝐷 ⊂ F and F is
a vector space closed by pointwise limits, hence 𝐶 (𝐴) ⊂ F and F = 𝐵(𝐴). Therefore 𝑎 ∈ 𝐴𝑆,
and

∫
𝑎( 𝑓 |·)𝑔 𝑑𝜎0 =

∫
lim
𝑛
𝑎( 𝑓𝑛 |·)𝑔 𝑑𝜎0 = lim

𝑛

∫
𝑎( 𝑓𝑛 |·)𝑔 𝑑𝜎0 = lim

𝑛
�̄�( 𝑓𝑛, 𝑔) = �̄�( 𝑓 , 𝑔) since

�̄�(·, 𝑔) is continuous for every 𝑔 ∈ 𝐵(𝑆), hence ](𝑎) = �̄�, and ](𝑎𝛼𝛽 ) → ](𝑎), which implies
𝑎𝛼𝛽 → 𝑎 in 𝐴𝑆. Hence 𝐴𝑆 is compact, as claimed.

4Note that every (Borel) probability measure in a Polish space is regular (Aliprantis and Border, 2006, 12.7),
so if we assume Ω, 𝑆, 𝑆′ Polish we can drop the assumption that `0, 𝜎0, 𝜎

′
0 are regular.
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We define 𝑀Ω and 𝐴Ω similarly, except we use `0 instead of 𝜎0 when defining the topology.
Let �̂� : 𝐴𝑆 → 𝐴Ω be given by �̂�(𝑎) = 𝑎 ◦𝜎. It is continuous: if 𝑎𝛼 → 𝑎 in 𝐴𝑆, and 𝑓 ∈ 𝐶 (𝐴),
𝑔 ∈ 𝐵(Ω), we have∫

�̂�(𝑎𝛼) ( 𝑓 |·)𝑔 𝑑`0 =

∫
𝑎𝛼 ◦ 𝜎( 𝑓 |·)𝑔 𝑑`0 =

∫
𝜎(𝑎𝛼 ( 𝑓 |·) |·)𝑔 𝑑`0

=

∫
𝑎𝛼 ( 𝑓 |·)𝛽𝜎 (𝑔 |·) 𝑑𝜎0 →

∫
𝑎( 𝑓 |·)𝛽𝜎 (𝑔 |·) 𝑑𝜎0

=

∫
�̂�(𝑎) ( 𝑓 |·)𝑔 𝑑`0,

so �̂�(𝑎𝛼) → �̂�(𝑎). Its image is �̂�(𝐴𝑆) = {𝑎 ◦ 𝜎 : 𝑎 ∈ 𝐴𝑆}, which is compact since 𝐴𝑆 is
compact.

Let 𝑁 = {𝑎 ∈ 𝑀Ω : 𝑎 = 0 `0-a.e.}, a closed vector subspace of 𝑀Ω, and 𝜋 : 𝑀Ω → 𝑀Ω/𝑁
the projection to the quotient space. For each 𝑓 ∈ 𝑀∗

Ω
we have 𝑓 |𝑁 = 0 (since that is true for every

𝐿 𝑓 ,𝑔 with 𝑓 ∈ 𝐶 (𝐴), 𝑔 ∈ 𝐵(Ω)), hence there is 𝑓 : 𝑀Ω/𝑁 → ℝ linear given by 𝑓 (𝜋(𝑎)) = 𝑓 (𝑎).
We endow 𝑀Ω/𝑁 with the minimal topology that makes them continuous; 𝜋 is continuous, and
𝑀Ω/𝑁 is Hausdorff. The assumption that 𝜎 is not more informative than 𝛼 relative to `0

means that 𝜋(𝛼) ∉ 𝜋(�̂�(𝐴𝑆)). Now both are convex and compact, hence by Hahn-Banach there
is 𝜙 : 𝑀Ω → ℝ linear continuous and 𝑡 ∈ ℝ such that 𝜙(𝜋(𝛼)) > 𝑡 > 𝜙(𝜋(𝑎 ◦ 𝜎)) for all
𝑎 ∈ 𝐴𝑆. Let 𝜙 = 𝜙 ◦ 𝜋. It is in 𝑀∗

Ω
, therefore 𝜙(𝑎) = ∑𝑛

𝑖=1 𝑐𝑖
∫
𝑎( 𝑓𝑖 |·)𝑔𝑖 𝑑`0 for some 𝑐𝑖 ∈ ℝ,

𝑓𝑖 ∈ 𝐶 (𝐴), 𝑔𝑖 ∈ 𝐵(Ω), so 𝜙(𝑎) =
∫
𝑢(𝑎(𝜔), 𝜔) 𝑑`0(𝜔) for 𝑢(𝑎, 𝜔) = ∑𝑛

𝑖=1 𝑐𝑖 𝑓𝑖 (𝑎)𝑔𝑖 (𝜔), which
is bounded, continuous in 𝑎 and measurable in 𝜔. Hence (𝐴, 𝑢) is a decision problem and
𝑈 (𝛼) > 𝑡 > 𝑈 (𝛼′) for every 𝛼′ ∈ A𝜎, so 𝑉 (𝛼) > 𝑉 (𝜎) and (4) doesn’t hold, as desired.

Now, let’s prove it for 𝐴 separable. We proceed as in the proof of Aliprantis and Border
(2006, 15.12). There is �̃� compact metrizable such that 𝐴 is a topological subspace of �̃�. By
regularity of 𝛼0 there is 𝐾 =

⋃
𝑛∈ℕ 𝐾𝑛 with 𝐾𝑛 ⊂ 𝐴 compact (therefore also compact in �̃�) such

that 𝛼0(𝐾) = 1, so by modifying 𝛼 in a `0-null set we can take 𝛼 : Ω → Δ(𝐾) ⊂ Δ( �̃�), since
𝐾 ∈ B�̃�. Suppose that there is �̃� : 𝑆 → Δ( �̃�) such that 𝛼 = �̃� ◦𝜎 `0-a.e. Again, we can modify
�̃� in a 𝜎0-null set so that �̃� : 𝑆 → Δ(𝐾) and 𝛼 = �̃� ◦ 𝜎 still holds `0-a.e. This is absurd since
we are assuming that (1) doesn’t hold. Therefore we can apply what we proved for �̃�, and we
obtain a decision problem ( �̃�, 𝑢) such that 𝑉 (𝛼) > 𝑉 (𝜎), hence (4) doesn’t hold. ■

Comment.—If Ω is compact, the theorem still holds if we change (3) by a weaker version,
namely, that

∫
𝑓 𝑑𝑝𝜎 ⩾

∫
𝑓 𝑑𝑝𝜎′ for every 𝑓 ∈ 𝐶 (Δ(Ω)) convex (3′). Aliprantis and Border

(2006, 19.40) proves (2) ⇔ (3′), but my proof of (3) ⇒ (4) breaks down with (3′). To complete
the proof it’s enough to show (2) ⇒ (1), since we proved that (1) ⇒ (2) in Proposition 7 and
(1) ⇔ (4) in Proposition 8 and Theorem 1. The proof of (2) ⇒ (1) is in fact very easy.

Proposition 10. Let Ω, 𝑆, 𝑆′ separable metrizable, `0 ∈ Δ(Ω), 𝜎 : Ω → Δ(𝑆), 𝜎′ : Ω →
Δ(𝑆′) signals with `0, 𝜎0, 𝜎

′
0 regular. If there is a mean-preserving spread 𝛾 : Δ(Ω) →

Δ(Δ(Ω)) such that 𝑝𝜎 = 𝛾 ◦ 𝑝𝜎′ then 𝜎 ⩾`0
𝐵
𝜎′.
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Proof. We can assume that 𝜎, 𝜎′ are direct by Proposition 5. Take the posterior map of 𝛾
with prior 𝑝𝜎′. See the diagram:

• `0 //

𝑝𝜎′ --

𝑝𝜎

$$
Ω

𝜎 //

𝜎′
!!

Δ(Ω)
𝜏

xx
Δ(Ω)

𝛾

OO

Take 𝛽 : ` ↦→ `, the posterior of both 𝜎 and 𝜎′, 𝑓 ∈ 𝐵(Δ(Ω)) and 𝑔 ∈ 𝐵(Ω). By the definition
of 𝜏 we have

∫
𝜏( 𝑓 |·)𝛽(𝑔 |·) 𝑑𝑝𝜎 =

∫
𝑓 𝛾(𝛽(𝑔 |·) |·) 𝑑𝑝𝜎′. The LHS is

∫
𝜎(𝜏( 𝑓 |·) |·)𝑔 𝑑`0 =∫

𝜏◦𝜎( 𝑓 |·)𝑔 `0, and the RHS is
∫
𝑓 𝛾(𝛽(𝑔 |·) |·) 𝑑𝑝𝜎′ =

∫
𝑓 𝛽(𝑔 |·) 𝑑𝑝𝜎′ =

∫
𝜎′( 𝑓 |·)𝑔 𝑑`0, since

𝛾(𝛽(𝑔 |·) |`) =
∫
a(𝑔) 𝑑𝛾(a |`) = `(𝑔) = 𝛽(𝑔 |`) by the definition of 𝛾. Hence

∫
𝜎′( 𝑓 |·)𝑔 𝑑`0 =∫

𝜏 ◦ 𝜎( 𝑓 |·)𝑔 `0, i.e., 𝜎 ⩾`0
𝐵
𝜎′. ■
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